首页> 外文OA文献 >Adaptive methods for score function modeling in blind source separation
【2h】

Adaptive methods for score function modeling in blind source separation

机译:盲源分离中分数函数建模的自适应方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In signal processing and related fields, multichannel measurements are often encountered. Depending on the application, for instance, multiple antennas, multiple microphones or multiple biomedical sensors are used for the data acquisition. Such systems can be described using Multiple-Input Multiple-Output (MIMO) system models. In many cases, several source signals are present at the same time and there is only limited knowledge of their properties and how they contribute to each sensor output. If the source signals and the physical system are unknown and only the sensor outputs are observed, the processing methods developed for recovering the original signals are called blind.In Blind Source Separation (BSS) the goal is to recover the source signals from the observed mixed signals (mixtures). Blindness means that neither the sources nor the mixing system is known. Separation can be based on the theoretically limiting but practically feasible assumption that the sources are statistically independent. This assumption connects BSS and Independent Component Analysis (ICA). The usage of mutual information as a measure of independence leads to iterative estimation of the score functions of the mixtures.The purpose of this thesis is to develop BSS methods that can adapt to different source distributions. Adaptation makes it possible to separate sources without knowing the source distributions or even the characteristics of source distributions. Special attention is paid to methods that allow also asymmetric source distributions. Asymmetric distributions occur in important applications such as communications and biomedical signal processing. Adaptive techniques are proposed for the modeling of score functions or estimating functions. Three approaches based on the Pearson system, the Extended Generalized Lambda Distribution (EGLD) and adaptively combined fixed estimating functions are proposed. The Pearson system and the EGLD are parametric families of distributions and they are used to model the distributions of the mixtures. The strength of these parametric families is that they contain a wide class of distributions, including asymmetric distributions with positive and negative kurtosis, while the estimation of the parameters is still a relatively simple procedure. The methods may be implemented using existing ICA algorithms.The reliable performance of the proposed methods is demonstrated in extensive simulations. In addition to symmetric source distributions, asymmetric distributions, such as Rayleigh and lognormal distribution, are utilized in simulations. The score adaptive methods outperform commonly used methods due to their ability to adapt to asymmetric distributions.
机译:在信号处理和相关领域,经常遇到多通道测量。取决于应用,例如,多个天线,多个麦克风或多个生物医学传感器被用于数据采集。可以使用多输入多输出(MIMO)系统模型来描述此类系统。在许多情况下,会同时存在多个源信号,并且对其属性以及它们如何影响每个传感器输出的知识只有有限的知识。如果源信号和物理系统未知,并且仅观察到传感器输出,则为恢复原始信号而开发的处理方法称为盲信号。盲源分离(BSS)的目标是从观察到的混合信号中恢复源信号信号(混合物)。失明意味着来源和混合系统均未知。分离可以基于源在统计上独立的理论限制但在实践上可行的假设。该假设将BSS与独立成分分析(ICA)联系起来。利用互信息作为衡量独立性的指标,可以对混合物的得分函数进行迭代估计。本文的目的是开发能够适应不同来源分布的BSS方法。适应使得可以在不知道源分布甚至源分布的特征的情况下分离源。特别注意允许非对称源分布的方法。非对称分布出现在重要应用中,例如通信和生物医学信号处理。提出了用于分数函数或估计函数建模的自适应技术。提出了三种基于Pearson系统的方法,扩展广义Lambda分布(EGLD)和自适应组合的固定估计函数。 Pearson系统和EGLD是分布的参数族,它们被用来对混合物的分布进行建模。这些参数族的优势在于它们包含广泛的分布类别,包括具有正峰度和负峰度的不对称分布,而参数的估计仍然是一个相对简单的过程。可以使用现有的ICA算法来实现这些方法。在广泛的仿真中证明了所提出方法的可靠性能。除了对称源分布外,在仿真中还使用了非对称分布(例如瑞利分布和对数正态分布)。得分自适应方法由于能够适应不对称分布而胜过常用方法。

著录项

  • 作者

    Karvanen Juha;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号