首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive blind source separation for virtually any source probability density function
【24h】

Adaptive blind source separation for virtually any source probability density function

机译:适用于几乎任何源概率密度函数的自适应盲源分离

获取原文
获取原文并翻译 | 示例

摘要

Blind source separation (BSS) aims to recover a set of statistically independent source signals from a set of linear mixtures of the same sources. In the noiseless real-mixture two-source two-sensor scenario, once the observations are whitened (decorrelated and normalized), only a Givens rotation matrix remains to be identified in order to achieve the source separation. In this paper an adaptive estimator of the angle that characterizes such a rotation is derived. It is shown to converge to a stable valid separation solution with the only condition that the sum of source kurtosis be distinct from zero. An asymptotic performance analysis is carried out, resulting in a closed-form expression for the asymptotic probability density function of the proposed estimator. It is shown how the estimator can be incorporated into a complete adaptive source separation system by combining it with an adaptive prewhitening strategy and how it can be useful in a general BSS scenario of more than two signals by means of a pairwise approach. A variety of simulations assess the accuracy of the asymptotic results, display the properties of the estimator (such as its robust fast convergence), and compare this on-line BSS implementation with other adaptive BSS procedures.
机译:盲源分离(BSS)旨在从一组相同源的线性混合物中恢复一组统计上独立的源信号。在无噪声的真实混合两源双传感器场景中,一旦观测值变白(与相关性和归一化),则仅需确定一个Givens旋转矩阵即可实现源分离。在本文中,得出了表征这种旋转的角度的自适应估计器。证明了它收敛到一个稳定的有效分离解,并且唯一的条件是源峰度之和不同于零。进行了渐近性能分析,得出了该估计量的渐近概率密度函数的闭式表达式。它显示了如何将估计器与自适应预白化策略相结合,将其合并到一个完整的自适应信号源分离系统中,以及如何通过成对方法将其用于两个以上信号的一般BSS场景中。各种模拟评估渐近结果的准确性,显示估计器的属性(例如其鲁棒的快速收敛性),并将此在线BSS实现与其他自适应BSS程序进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号