首页> 外文期刊>IEEE Transactions on Signal Processing >Blind separation of independent sources for virtually any source probability density function
【24h】

Blind separation of independent sources for virtually any source probability density function

机译:几乎任何源概率密度函数的独立源盲分离

获取原文
获取原文并翻译 | 示例

摘要

The blind source separation (BSS) problem consists of the recovery of a set of statistically independent source signals from a set of measurements that are mixtures of the sources when nothing is known about the sources and the mixture structure. In the BSS scenario, of two noiseless real-valued instantaneous linear mixtures of two sources, an approximate maximum-likelihood (ML) approach has been suggested in the literature, which is only valid under certain constraints on the probability density function (pdf) of the sources. In the present paper, the expression for this ML estimator is reviewed and generalized to include virtually any source distribution. An intuitive geometrical interpretation of the new estimator is also given in terms of the scatter plots of the signals involved. An asymptotic performance analysis is then carried out, yielding a closed-form expression for the estimator asymptotic pdf. Simulations illustrate the behavior of the suggested estimator and show the accuracy of the asymptotic analysis. In addition, an extension of the method to the general BSS scenario of more than two sources and two sensors is successfully implemented.
机译:盲源分离(BSS)问题包括在对源和混合结构一无所知的情况下,从作为源混合的一组测量中恢复一组统计上独立的源信号。在BSS场景中,两个源的两个无噪声实值瞬时线性混合,在文献中提出了一种近似最大似然(ML)方法,该方法仅在对概率密度函数(pdf)的某些约束下有效。来源。在本文中,对该ML估计量的表达式进行了回顾和概括,以包括几乎所有源分布。还根据所涉及信号的散点图给出了新估算器的直观几何解释。然后进行渐近性能分析,得出估计量渐近pdf的闭式表达式。仿真说明了建议的估计器的行为,并显示了渐近分析的准确性。此外,该方法已成功地扩展到两个以上源和两个传感器的一般BSS方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号