In this paper, we propose a model for households to share energy from community energy storage (CES) such that both households and utility company benefit from CES. In addition to providing a range of ancillary grid services, CES can also be used for demand side management, to shave peaks and fill valleys in system load. We introduce a method stemming from consumer theory and cooperative game theory that uses CES to balance the load of an entire locality and manage household energy allocations respectively. Load balancing is derived as a geometric programming problem. Each household’s contribution to overall non-uniformity of the load profile is modeled using a characteristic function and Shapley values are used to allocate the amount and price of surplus energy stored in CES. The proposed method is able to perfectly balance the load while also making sure that each household is guaranteed a reduction in energy costs.
展开▼