首页> 外文OA文献 >Semi-Supervised Learning Vector Quantization method enhanced with regularization for anomaly detection in air conditioning time-series data
【2h】

Semi-Supervised Learning Vector Quantization method enhanced with regularization for anomaly detection in air conditioning time-series data

机译:通过正则化增强的半监督学习矢量量化方法,用于空调时序数据的异常检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Researchers of semi-supervised learning methods have been developing the family of Learning Vector Quantization models which originated from the well-known Self-Organizing Map algorithm. The models of this type can be characterized as prototype-based, self-explanatory and flexible.The thesis contributes to the development of one of the LVQ models – Semi-Supervised Relational Prototype Classifier for dissimilarity data. The model implementation is developed based on the related research work and thesis author findings, and applied to the task of anomaly detection from a real-time air condition data. We propose a regularization algorithm for gradient descent in order to achieve better convergence and a new strategy for initializing prototypes. We develop an innovative framework involving a human expert as a source of labeled data. The framework detects anomalies of environment parameters in both real-time and long-run observations and updates the model according to findings.The data set used for experiments is collected in real-time from sensors installed inside the Aalto Mechanical Engineering building located at Otakaari, 4, Espoo. Installation was done as a part of the project of VTT and Korean National Research Institute. The data consists of 3 main parameters – air temperature, humidity and CO2 concentration. Total number of deployed sensors is around 150. One month recorded data observations contains approximately 1.5M of data points.The results of the project demonstrate the efficiency of the developed regularized LVQ method for classification in given settings. Its regularized version generally overperforms its parent and various baseline methods on air conditioning, synthetic and UCI data. Together with the proposed classification framework, the system has shown its robustness and efficiency and is ready for deployment to a production environment.
机译:半监督学习方法的研究人员已经开发了学习矢量量化模型系列,该模型源自著名的自组织映射算法。这种类型的模型可以表征为基于原型的,不言自明的和灵活的。本文为LVQ模型之一的发展做出了贡献-半监督关系原型分类器用于相异数据。该模型的实现是基于相关研究工作和论文作者的发现而开发的,并被应用于从实时空调数据中进行异常检测的任务。我们提出一种用于梯度下降的正则化算法,以实现更好的收敛性,并提出了一种用于初始化原型的新策略。我们开发了一个创新的框架,其中涉及人类专家作为标记数据的来源。该框架可通过实时和长期观测来检测环境参数的异常情况,并根据发现的结果更新模型。用于实验的数据集是从位于Otakaari的Aalto机械工程大楼内安装的传感器实时收集的, 4,埃斯波。安装是VTT和韩国国家研究院的项目的一部分。数据由3个主要参数组成-空气温度,湿度和CO2浓度。部署的传感器总数约为150个。一个月记录的数据观测结果包含大约150万个数据点。该项目的结果证明了在给定环境下开发的常规LVQ分类方法的效率。在空调,合成和UCI数据方面,其规范化版本通常优于其父级和各种基准方法。与建议的分类框架一起,该系统已显示出其健壮性和效率,并且可以部署到生产环境中。

著录项

  • 作者

    Andriushchenko Igor;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号