首页> 外文OA文献 >Statistical analysis of vehicle time headways
【2h】

Statistical analysis of vehicle time headways

机译:车辆行驶时间的统计分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The properties of vehicle time headways are fundamental in many traffic engineering applications, such as capacity and level of service studies on highways, unsignalized intersections, and roundabouts. The operation of modern vehicle-actuated traffic signals is based on the measurement of time headways in the arriving traffic flow. In addition, the vehicle generation in traffic flow simulation is usually based on some theoretical vehicle time headway model.The statistical analysis of vehicle time headways has been inadequate in three important aspects: 1) There has been no standard procedure to collect headway data and to describe their statistical properties. 2) The goodness-of-fit tests have been either powerless or infeasible. 3) Test results from multi-sample data have not been combined properly.A four-stage identification process is suggested to describe the headway data and to compare it with theoretical distributions. The process includes the estimation of the probability density function, the hazard function, the coefficient of variation, and the squared skewness and the kurtosis. The four-stage identification process effectively describes those properties of the distribution that are most helpful in selecting a theoretical headway model.One of the major problems in the headway studies has been the method for goodness-of-fit tests. The two most commonly used tests are the chi-square test and the nonparametric Kolmogorov-Smirnov test. The chi-square test is not very powerful. The nonparametric Kolmogorov-Smirnov test should be applied only, when the parameters of the distribution are known. If the parameters are estimated from the data, as in typical headway studies, the nonparametric Kolmogorov-Smirnov test gives too conservative results. These problems are addressed by parametric goodness-of-fit tests based on Monte Carlo methods.Another great problem has been the lack of theoretical foundation in dealing with multi-sample data. The headway data usually consist of several samples, and the null hypothesis is tested against each of them. Two methods are presented to strengthen the evidence of multi-sample tests: 1) The combined probability method gives a single significance probability based on several independent tests. 2) The moving probability method is used to describe the variation of combined probabilities against traffic volume.These methods were applied to time headway data from Finnish two-lane two-way roads. The independence of consecutive headways was tested using autocorrelation analysis, runs tests and goodness-of-fit tests for the geometric bunch size distribution. The results indicate that the renewal hypothesis should not be accepted in all traffic situations. This conclusion is partly supported by a further analysis of previous studies.Five theoretical distributions were tested for goodness of fit: the negative exponential distribution, the shifted exponential distribution, the gamma distribution, the lognormal distribution and the semi-Poisson distribution. None of these passed the tests. In the parameter estimation the maximum likelihood method was preferred. For distributions having a location (threshold) parameter, a modified maximum likelihood method was shown to give good estimates.The proposed procedures give a scientific foundation to identify and estimate statistical models for vehicle time headways, and to test the goodness of fit. It is shown that the statistical methods in the analysis of vehicle headways should be thoroughly revised following the guidelines presented here.
机译:车辆行驶时间的属性在许多交通工程应用中至关重要,例如高速公路,无信号交叉路口和环形交叉路口的通行能力和服务水平研究。现代车辆驱动的交通信号灯的操作基于到达交通流中车距的测量。此外,交通流模拟中的车辆生成通常基于一些理论上的车辆时间车距模型。车辆时间车距的统计分析在三个重要方面是不够的:1)没有标准的程序来收集车速数据并描述其统计属性。 2)拟合优度测试无能为力或不可行。 3)多样本数据的测试结果没有正确组合,建议采用四阶段识别过程来描述车头数据并将其与理论分布进行比较。该过程包括对概率密度函数,危险函数,变异系数以及偏度和峰度平方的估计。四个阶段的识别过程有效地描述了最有助于选择理论车距模型的分布特性。车距研究的主要问题之一是拟合优度测试的方法。两个最常用的检验是卡方检验和非参数Kolmogorov-Smirnov检验。卡方检验不是很强大。仅当分布参数已知时,才应应用非参数Kolmogorov-Smirnov检验。如果像典型的车距研究那样从数据中估计参数,则非参数Kolmogorov-Smirnov检验将得出过于保守的结果。这些问题通过基于蒙特卡洛方法的参数拟合优度检验得到解决。另一个重大问题是在处理多样本数据时缺乏理论基础。车距数据通常由几个样本组成,并且针对每个样本检验零假设。提出了两种方法来加强多样本检验的证据:1)组合概率法基于几个独立的检验给出单个显着概率。 2)用移动概率法描述组合概率随交通量的变化,并将这些方法应用于芬兰两车道双向道路的时距数据。使用自相关分析,几何形状尺寸分布的运行测试和拟合优度测试对连续车道的独立性进行了测试。结果表明,在所有流量情况下都不应接受更新假设。先前研究的进一步分析部分支持了这一结论。对五个理论分布的拟合优度进行了测试:负指数分布,移位指数分布,伽玛分布,对数正态分布和半泊松分布。这些都没有通过测试。在参数估计中,首选最大似然法。对于具有位置(阈值)参数的分布,已显示出一种改进的最大似然方法可以给出良好的估计值。所提出的程序为识别和估计车辆行驶时间的统计模型以及测试拟合优度提供了科学依据。结果表明,应根据此处介绍的指南彻底修改车辆行进分析中的统计方法。

著录项

  • 作者

    Luttinen R. Tapio;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号