首页> 外文OA文献 >Spectral analysis and slow spreading dynamics on complex networks
【2h】

Spectral analysis and slow spreading dynamics on complex networks

机译:复杂网络上的频谱分析和慢扩散动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free networks. QMF can take into account topological heterogeneity and clustering effects of the activity in the steady state by spectral decomposition analysis of the adjacency matrix. Therefore, it can provide predictions on possible rare-region effects, thus on the occurrence of slow dynamics. I compare QMF results of SIS with simulations on various large dimensional graphs. In particular, I show that for Erdős-Rényi graphs this method predicts correctly the occurrence of rare-region effects. It also provides a good estimate for the epidemic threshold in case of percolating graphs. Griffiths Phases emerge if the graph is fragmented or if we apply a strong, exponentially suppressing weighting scheme on the edges. The latter model describes the connection time distributions in the face-to-face experiments. In case of a generalized Barabási-Albert type of network with aging connections, strong rare-region effects and numerical evidence for Griffiths Phase dynamics are shown. The dynamical simulation results agree well with the predictions of the spectral analysis applied for the weighted adjacency matrices.
机译:易感感染易感性(SIS)模型是用于描述具有竞争性创造和自发an灭反应的信息或流行病传播现象的最简单的无记忆系统之一。最近,在无标度网络中将淬灭性紊乱对动力学行为的影响与淬灭平均场(QMF)近似进行了比较。 QMF可以通过邻接矩阵的频谱分解分析来考虑拓扑异构性和稳态下活动的聚类效应。因此,它可以预测可能的稀有区域效应,从而预测慢速动力学的发生。我将SIS的QMF结果与在各种大型图上进行的仿真进行比较。特别是,我表明对于Erdős-Rényi图,该方法可以正确预测稀有区域效应的发生。在渗流图的情况下,它还可以很好地估计流行阈值。如果图形是零散的,或者如果我们在边缘上应用强大的指数抑制加权方案,就会出现格里菲斯相位。后一个模型描述了面对面实验中的连接时间分布。在具有老化连接的广义Barabási-Albert类型网络的情况下,将显示强烈的稀疏区域效应和格里菲斯相动力学的数值证据。动态仿真结果与应用于加权邻接矩阵的频谱分析的预测非常吻合。

著录项

  • 作者

    Ódor Géza;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号