首页> 外文OA文献 >$R^4$ couplings, the fundamental membrane and exceptional theta correspondences
【2h】

$R^4$ couplings, the fundamental membrane and exceptional theta correspondences

机译:$ R ^ 4 $联轴器,基本膜片和特殊的theta对应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This letter is an attempt to carry out a first-principle computation in M-theory using the point of view that the eleven-dimensional membrane gives the fundamental degrees of freedom of M-theory. Our aim is to derive the exact BPS $R^4$ couplings in M-theory compactified on a torus $T^{d+1}$ from the toroidal BPS membrane, by pursuing the analogy with the one-loop string theory computation. We exhibit an $Sl(3,\Zint)$ modular invariance hidden in the light-cone gauge (but obvious in the Polyakov approach), and recover the correct classical spectrum and membrane instantons; the summation measure however is incorrect. It is argued that the correct membrane amplitude should be given by an exceptional theta correspondence lifting $Sl(3,\Zint)$ modular forms to $\exc(\Zint)$ automorphic forms, generalizing the usual theta lift between $Sl(2,\Zint)$ and $SO(d,d,\Zint)$ in string theory. The exceptional correspondence $Sl(3)\times E_{6(6)}\subset E_{8(8)}$ offers the interesting prospect of solving the membrane small volume divergence and unifying membranes with five-branes.
机译:这封信是试图从11维膜片给出M理论的基本自由度的观点出发,在M理论中进行第一性原理计算的尝试。我们的目的是通过采用单环弦理论计算的类比,推导从环形BPS膜压实在圆环$ T ^ {d + 1} $上的M理论中的精确BPS $ R ^ 4 $偶合。我们展示了隐藏在光锥量规中的$ Sl(3,\ Zint)$模不变性(但在Polyakov方法中很明显),并恢复了正确的经典光谱和膜实例。但是,总和度量是不正确的。有人认为,正确的膜振幅应通过特殊的theta对应关系来给出,即将$ Sl(3,\ Zint)$模块化形式提升为$ \ exc(\ Zint)$自同形式,并推广在$ Sl(2 ,\ Zint)$和$ SO(d,d,\ Zint)$的字符串理论。特殊的对应关系$ Sl(3)乘以E_ {6(6)} \子集E_ {8(8)} $提供了解决膜小体积散度并用五臂统一膜的有趣前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号