首页> 外文OA文献 >Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit
【2h】

Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

机译:马尔可夫动力学作为多尺度社区检测的变焦镜头:非集团式社区和视野范围限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid, where a multiscale structure of non clique-like communities is revealed.
机译:近年来,对用于复杂网络的社区检测算法的兴趣激增。已经提出了多种计算启发式方法,其中一些具有悠久的历史,以用于识别社区或可替代的良好图分区。在大多数情况下,算法会最大化特定的目标函数,从而找到将“正确”分成社区的权利。尽管仍然缺乏对算法的彻底比较,但仍在努力设计基准,即具有已知社区结构的随机图模型,可以据此对算法进行评估。但是,流行的社区检测方法和基准通常基于类似团的子图假设社区的隐含概念,这是社区结构的一种形式,并不总是真实网络的特征。具体来说,由几何约束产生的网络可以具有自然的非团状子结构,其有效直径较大,可以将其解释为远程社区。在这项工作中,我们展示了远程社区通过流行的方法逃脱了检测,而这些方法却被“视野范围”的限制所遮蔽,这是他们可以检测到的社区的固有上限。视野限制意味着远程社区倾向于过度划分。我们展示了如何通过对社区检测采用动态的观点[1],[2],其中图上的马尔可夫过程的演化被用作网络在所有规模上的缩放镜头,可以同时检测到两者群体或非群体类社区,而不会对检测施加较大规模。因此,算法在固有的小直径,类似团簇的基准上的性能可能并不总是表明在具有局部稀疏连接性的真实网络中具有同样好的结果。我们用建设性的例子并通过对来自成像,蛋白质结构和电网的现实世界网络的分析来说明我们的想法,在该网络中揭示了非集团状社区的多尺度结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号