首页> 外文OA文献 >SP5: Improving Protein Fold Recognition by Using Torsion Angle Profiles and Profile-Based Gap Penalty Model
【2h】

SP5: Improving Protein Fold Recognition by Using Torsion Angle Profiles and Profile-Based Gap Penalty Model

机译:SP5:通过使用扭转角度轮廓和基于轮廓的间隙罚分模型改善蛋白质折叠识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How to recognize the structural fold of a protein is one of the challenges in protein structure prediction. We have developed a series of single (non-consensus) methods (SPARKS, SP2, SP3, SP4) that are based on weighted matching of two to four sequence and structure-based profiles. There is a robust improvement of the accuracy and sensitivity of fold recognition as the number of matching profiles increases. Here, we introduce a new profile-profile comparison term based on real-value dihedral torsion angles. Together with updated real-value solvent accessibility profile and a new variable gap-penalty model based on fractional power of insertion/deletion profiles, the new method (SP5) leads to a robust improvement over previous SP method. There is a 2% absolute increase (5% relative improvement) in alignment accuracy over SP4 based on two independent benchmarks. Moreover, SP5 makes 7% absolute increase (22% relative improvement) in success rate of recognizing correct structural folds, and 32% relative improvement in model accuracy of models within the same fold in Lindahl benchmark. In addition, modeling accuracy of top-1 ranked models is improved by 12% over SP4 for the difficult targets in CASP 7 test set. These results highlight the importance of harnessing predicted structural properties in challenging remote-homolog recognition. The SP5 server is available at http://sparks.informatics.iupui.edu.
机译:如何识别蛋白质的结构折叠是蛋白质结构预测中的挑战之一。我们已经开发了一系列的单(非共识)方法(SPARKS,SP2,SP3,SP4),这些方法基于两到四个序列和基于结构的配置文件的加权匹配。随着匹配配置文件数量的增加,折痕识别的准确性和灵敏度得到了极大的提高。在这里,我们介绍了一个基于实值二面角扭转角的新轮廓比较项。结合更新的实值溶剂可及性配置文件和基于插入/缺失配置文件的分数功率的新的可变间隙罚分模型,新方法(SP5)导致了对以前SP方法的强大改进。根据两个独立的基准,比SP4的对齐精度绝对提高2%(相对提高5%)。此外,在Lindahl基准测试中,SP5识别正确的结构折叠的成功率绝对提高了7%(相对提高了22%),而同一折叠范围内的模型的模型准确性则提高了32%。此外,对于CASP 7测试集中的困难目标,排名前1的模型的建模精度比SP4提高了12%。这些结果突出了利用预测的结构特性在具有挑战性的远程同源识别中的重要性。可从http://sparks.informatics.iupui.edu获得SP5服务器。

著录项

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号