首页> 外文学位 >Using chemical crosslinking and mass spectrometry for protein model validation and fold recognition.
【24h】

Using chemical crosslinking and mass spectrometry for protein model validation and fold recognition.

机译:使用化学交联和质谱进行蛋白质模型验证和折叠识别。

获取原文
获取原文并翻译 | 示例

摘要

The 3D structures of proteins may provide important clues to their functions and roles in complex biological pathways. Traditional methods such as X-ray crystallography and NMR are not feasible for all proteins, while theoretical models are typically not validated by experimental data. This project investigates the use of chemical crosslinkers as an experimental means of validating these models. Five target proteins were successfully purified from yeast whole cell extract: Transketolase (TKL1), inorganic pyrophosphatase (IPP1), amidotransferase/cyclase HIS7, phosphoglycerate kinase (PGK1) and enolase (ENO1). These TAP-tagged target proteins from yeast Saccharomyces cerevisiae allowed the protein to be isolated in two affinity purification steps. Subsequent structural analysis used the homobifunctional chemical crosslinker BS 3 to join pairs of lysine residues on the surface of the purified protein via a flexible spacer arm. Mass spectrometry (MS) analysis of the crosslinked protein generated a set of mass values for crosslinked and non-crosslinked peptides, which was used to identify surface lysine residues in close proximity. The Automatic Spectrum Assignment Program was used to assign sequence information to the crosslinked peptides. This data provided inter-residue distance constraints that can be used to validate or refute theoretical protein structure models generated by structure prediction software such as SWISS-MODEL and RAPTOR. This approach was able to validate the structure models for four of the target proteins, TKL1, IPP1, HIS7 and ENO1. It also successfully selected the correct models for TKLl and IPP1 from a protein model library and provided weak support for the HIS7, PGK1 and ENO1 models.
机译:蛋白质的3D结构可能为它们在复杂的生物途径中的功能和作用提供重要线索。传统的方法(例如X射线晶体学和NMR)不适用于所有蛋白质,而理论模型通常无法通过实验数据验证。该项目研究了使用化学交联剂作为验证这些模型的实验手段。从酵母全细胞提取物中成功纯化了五个靶蛋白:转酮酶(TKL1),无机焦磷酸酶(IPP1),酰胺基转移酶/环化酶HIS7,磷酸甘油酸酯激酶(PGK1)和烯醇酶(ENO1)。这些来自酿酒酵母的带有TAP标签的靶蛋白可以在两个亲和纯化步骤中分离出该蛋白。随后的结构分析使用同双功能化学交联剂BS 3通过柔性间隔臂将纯化蛋白表面上的赖氨酸残基对连接起来。交联蛋白的质谱(MS)分析生成了一组交联和非交联肽的质量值,这些值用于识别紧密接近的表面赖氨酸残基。使用自动频谱分配程序将序列信息分配给交联的肽。此数据提供了残基间距离约束,可用于验证或反驳由结构预测软件(如SWISS-MODEL和RAPTOR)生成的理论蛋白质结构模型。这种方法能够验证四种目标蛋白TKL1,IPP1,HIS7和ENO1的结构模型。它还从蛋白质模型库中成功选择了TKL1和IPP1的正确模型,并为HIS7,PGK1和ENO1模型提供了较弱的支持。

著录项

  • 作者

    Mak, Esther W. M.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Biology Molecular.; Chemistry Analytical.
  • 学位 M.Sc.
  • 年度 2006
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号