首页> 外文OA文献 >Validation of Mixed-Genome Microarrays as a Method for Genetic Discrimination▿
【2h】

Validation of Mixed-Genome Microarrays as a Method for Genetic Discrimination▿

机译:验证混合基因组微阵列作为遗传识别方法▿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Comparative genomic hybridizations have been used to examine genetic relationships among bacteria. The microarrays used in these experiments may have open reading frames from one or more reference strains (whole-genome microarrays), or they may be composed of random DNA fragments from a large number of strains (mixed-genome microarrays [MGMs]). In this work both experimental and virtual arrays are analyzed to assess the validity of genetic inferences from these experiments with a focus on MGMs. Empirical data are analyzed from an Enterococcus MGM, while a virtual MGM is constructed in silico using sequenced genomes (Streptococcus). On average, a small MGM is capable of correctly deriving phylogenetic relationships between seven species of Enterococcus with accuracies of 100% (n = 100 probes) and 95% (n = 46 probes); more probes are required for intraspecific differentiation. Compared to multilocus sequence methods and whole-genome microarrays, MGMs provide additional discrimination between closely related strains and offer the possibility of identifying unique strain or lineage markers. Representational bias can have mixed effects. Microarrays composed of probes from a single genome can be used to derive phylogenetic relationships, although branch length can be exaggerated for the reference strain. We describe a case where disproportional representation of different strains used to construct an MGM can result in inaccurate phylogenetic inferences, and we illustrate an algorithm that is capable of correcting this type of bias. The bias correction algorithm automatically provides bootstrap confidence values and can provide multiple bias-corrected trees with high confidence values.
机译:比较基因组杂交已用于检查细菌之间的遗传关系。这些实验中使用的微阵列可能具有来自一个或多个参考菌株的开放阅读框(全基因组微阵列),或者它们可能由来自大量菌株的随机DNA片段组成(混合基因组微阵列[MGM])。在这项工作中,分析了实验阵列和虚拟阵列,以评估这些实验的遗传推断的有效性,重点是MGM。从肠球菌MGM分析经验数据,同时使用测序的基因组(链球菌)在计算机上构建虚拟MGM。平均而言,小型MGM能够正确推导7种肠球菌之间的系统发生关系,其准确度分别为100%(n = 100个探针)和95%(n = 46个探针);种内分化需要更多的探针。与多基因座测序方法和全基因组微阵列相比,MGM提供了对密切相关菌株的额外区分,并提供了鉴定独特菌株或谱系标记的可能性。代表性偏见可能产生多种影响。由单个基因组的探针组成的微阵列可用于推导系统发育关系,尽管对于参考菌株而言分支长度可能会被夸大。我们描述了一种情况,其中用于构建MGM的不同菌株的不成比例表达可能导致不正确的系统发育推断,并且我们举例说明了一种能够校正这种类型的偏差的算法。偏差校正算法自动提供自举置信度值,并可以提供具有高置信度值的多个偏差校正树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号