首页> 外文OA文献 >Single-atom scale structural selectivity in Te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes.
【2h】

Single-atom scale structural selectivity in Te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes.

机译:封装在超窄单壁碳纳米管内部的Te纳米线中的单原子级结构选择性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extreme nanowires (ENs) represent the ultimate class of crystals: They are the smallest possible periodic materials. With atom-wide motifs repeated in one dimension (1D), they offer a privileged perspective into the physics and chemistry of low-dimensional systems. Single-walled carbon nanotubes (SWCNTs) provide ideal environments for the creation of such materials. Here we present a comprehensive study of Te ENs encapsulated inside ultranarrow SWCNTs with diameters between 0.7 nm and 1.1 nm. We combine state-of-the-art imaging techniques and 1D-adapted ab initio structure prediction to treat both confinement and periodicity effects. The studied Te ENs adopt a variety of structures, exhibiting a true 1D realization of a Peierls structural distortion and transition from metallic to insulating behavior as a function of encapsulating diameter. We analyze the mechanical stability of the encapsulated ENs and show that nanoconfinement is not only a useful means to produce ENs but also may actually be necessary, in some cases, to prevent them from disintegrating. The ability to control functional properties of these ENs with confinement has numerous applications in future device technologies, and we anticipate that our study will set the basic paradigm to be adopted in the characterization and understanding of such systems.
机译:极端纳米线(EN)代表了晶体的终极类别:它们是可能的最小周期性材料。通过在一维(1D)上重复的全原子图案,它们为低维系统的物理和化学提供了一个独特的视角。单壁碳纳米管(SWCNT)为创建此类材料提供了理想的环境。在这里,我们对直径在0.7纳米至1.1纳米的超短SWCNT中封装的Te ENs进行了全面的研究。我们将最先进的成像技术与适应1D的从头开始结构预测相结合,以治疗局限性和周期性影响。所研究的Te ENs采用多种结构,表现出Peierls结构变形的真正一维实现,以及从金属行为到绝缘行为随封装直径的变化。我们分析了包封的EN的机械稳定性,结果表明,纳米约束不仅是生产EN的有用手段,而且在某些情况下实际上有必要防止它们的崩解。局限性地控制这些EN的功能特性的能力在未来的设备技术中有许多应用,并且我们希望我们的研究将为在表征和理解此类系统中采用的基本范例奠定基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号