首页> 外文OA文献 >Cavity-Enhanced Nanophotonic Spectroscopy In Optofluidic Devices
【2h】

Cavity-Enhanced Nanophotonic Spectroscopy In Optofluidic Devices

机译:光电器件中的腔增强纳米光子光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The devices fabricated and explored in this thesis belong to an emergent research field referred to as optofluidics. Research innovations in the areas of integrated optics and microfluidics have brought forth this new and exciting area of study which combines photonics with fluid handling on the microscale. By taking advantage of tools designed for the microelectronics industry, optofluidics promises new innovations which may revolutionize the areas of diagnostic medicine, drug discovery, and environmental monitoring. In this thesis, I have explored how one of the main building blocks of photonics-the optical cavity- can be combined with microfluidic handling capabilities to perform spectroscopic measurements for life science applications. This dissertation is divided into seven chapters with the following organization. In Chapter 1, I introduce the research field of optofluidics and its application in lab-on-a-chip technologies. Chapter 2 includes a motivation for the use of optical microcavities in biomedical sensing applications. I discuss the relevant parameters which describe the behavior of microring resonators and derive the equations governing their operation. Chapter 3 describes an experiment where polystyrene microspheres were optically trapped by the evanescent field from high index contrast silicon nitride waveguides. The use of a high-power broadband light source enables the simultaneous trapping, transport, and characterization of these microspheres by using their resonant properties. Chapter 4 discusses the use of optical microcavities to perform integrated laser absorption spectroscopy on nanoliter volumes of fluid. Relying on the cavity enhancement of light by silicon microrings, I demonstrate a sensitive and compact device which measures optical absorption in the near infrared regime. In Chapter 5 I demonstrate spectrophotometry measurements at visible wavelengths using microring resonators. Absorption products catalyzed by enzymes commonly used in bioassays are measured with microring resonator sensitive to the activity of individual enzymes. Chapter 6 builds on the work of the previous chapters to demonstrate microring measurements of optical absorption generated by bacteria growth. Results show the platform can be useful for fundamental studies on single bacteria. The final chapter includes a summary of the work and an outlook on the future of lab-on-a-chip devices.
机译:本文制造和探索的器件属于新兴的研究领域,称为光流学。集成光学和微流体学领域的研究创新带来了这一令人振奋的新研究领域,该领域将光子学与微米级的流体处理相结合。通过利用为微电子行业设计的工具,光流体技术有望带来新的创新,这可能会彻底改变诊断医学,药物发现和环境监测领域。在本文中,我探讨了光子学的主要组成部分之一-光腔-如何与微流体处理功能结合起来进行生命科学应用的光谱测量。本论文分为以下七章。在第一章中,我介绍了光流体学的研究领域及其在芯片实验室技术中的应用。第2章介绍了在生物医学传感应用中使用光学微腔的动机。我讨论了描述微环谐振器性能的相关参数,并推导了控制其工作的方程式。第3章介绍了一个实验,在该实验中,瞬态场从高折射率对比氮化硅波导中捕获了聚苯乙烯微球。大功率宽带光源的使用通过使用它们的共振特性,可以同时捕获,传输和表征这些微球。第4章讨论了使用光学微腔对纳升体积的流体进行集成激光吸收光谱。依靠硅微环对光腔的增强,我演示了一种灵敏而紧凑的设备,该设备可测量近红外区域的光吸收。在第5章中,我将演示使用微环谐振器在可见光波长下的分光光度法测量。生物测定中常用的酶催化的吸收产物是用对单个酶活性敏感的微环共振器测量的。第6章在前几章的工作基础上,展示了微环测量细菌生长产生的光吸收的测量结果。结果表明该平台可用于单一细菌的基础研究。最后一章包括工作总结以及对片上实验室设备的未来展望。

著录项

  • 作者

    Nitkowski Arthur;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号