首页> 外文OA文献 >Hydrodynamic limits for kinetic equations and the diffusive approximation of radiative transport for acoustic waves
【2h】

Hydrodynamic limits for kinetic equations and the diffusive approximation of radiative transport for acoustic waves

机译:动力学方程的流体力学极限和声波辐射输运的扩散近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a class of kinetic equations, equipped with a single conservation law, which generate L1-contractions. We discuss the hydrodynamic limit to a scalar conservation law and the diffusive limit to a (possibly) degenerate parabolic equation. The limits are obtained in the "dissipative" sense, equivalent to the notion of entropy solutions for conservation laws, which permits the use of the perturbed test function method and allows for simple proofs. A general compactness framework is obtained for the diffusive scaling in L1. The radiative transport equations, satisfied by the Wigner function for random acoustic waves, present such a kinetic model that is endowed with conservation of energy. The general theory is used to validate the diffusive approximation of the radiative transport equation.
机译:我们考虑一类动力学方程,该方程具有单个守恒律,可生成L1收缩。我们讨论了标量守恒律的流体动力极限和(可能)退化抛物方程的扩散极限。这些限制是从“耗散”意义上获得的,等同于守恒定律的熵解的概念,它允许使用扰动的测试函数方法,并允许简单的证明。对于L1中的扩散缩放,获得了一个通用的压缩框架。对于随机声波,维格纳函数满足的辐射输运方程式提出了一种具有能量守恒的动力学模型。一般理论用于验证辐射输运方程的扩散近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号