首页> 外文OA文献 >Modified Newton's method for supervised training of dynamical neural networks for applications in associative memory and nonlinear identification problems
【2h】

Modified Newton's method for supervised training of dynamical neural networks for applications in associative memory and nonlinear identification problems

机译:修正的牛顿方法在动态神经网络的有监督训练中的应用,用于联想记忆和非线性识别问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There have been several innovative approaches towards realizing an intelligent architecture that utilizes artificial neural networks for applications in information processing. The development of supervised training rules for updating the adjustable parameters of neural networks has received extensive attention in the recent past. In this study, specific learning algorithms utilizing modified Newton's method for the optimization of the adjustable parameters of a dynamical neural network are developed. Computer simulation results show that the convergence performance of the proposed learning schemes match very closely that of the LMS learning algorithm for applications in the design of associative memories and nonlinear mapping problems. However, the implementation of the modified Newton's method is complex due to the computation of the slope of the nonlinear sigmoidal function, whereas, the LMS algorithm approximates the slope to be zero.
机译:已经有几种创新的方法来实现利用人工神经网络在信息处理中应用的智能体系结构。近年来,用于更新神经网络的可调整参数的监督训练规则的开发受到了广泛的关注。在这项研究中,开发了特定的学习算法,该算法利用改进的牛顿法优化了动态神经网络的可调参数。计算机仿真结果表明,所提出的学习方案的收敛性能与LMS学习算法的收敛性能非常接近,可用于联想存储器和非线性映射问题的设计中。然而,由于计算了非线性S形函数的斜率,所以改进的牛顿法的实现是复杂的,而LMS算法使斜率近似为零。

著录项

  • 作者

    Bhalala Smita Ashesh 1966-;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号