首页> 外文OA文献 >Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements in the Closed Source Neutral Mode
【2h】

Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements in the Closed Source Neutral Mode

机译:在封闭源中性模式下通过卡西尼离子中性质谱仪测量分析泰坦的中性上层大气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis I present an in-depth study of the distribution of various neutral species in Titan’s upper atmosphere, at altitudes between 950 and 1,500 km for abundant species (N₂, CH₄ as well as their isotopes) and between 950 and 1,200 km for most minor species. However, the study of the H2 distribution on Titan is extended to an altitude as high as 6,000 km in the exosphere. The analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. The densities of abundant species including N₂, CH₄ and H₂ are determined directly from their main channels. However, to untangle the overlapping cracking patterns of minor species, the technique of Singular Value Decomposition (SVD) is used to determine simultaneously the densities of various hydrocarbons, nitriles and oxygen compounds. All minor species except for ⁴⁰Ar present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption or heterogeneous surface chemistry on the chamber walls. In the thesis, I use a simple model to describe the observed time behavior of minor species. Results on their atmospheric abundances are provided both in terms of direct inbound measurements assuming ram pressure enhancement and values corrected for wall adsorption/desorption. Among all minor species of photochemical interest, the INMS data provide direct observational evidences for C₂H₂, C₂H₄, C₂H₆, CH₃C₂H, C₄H₂, C₆H₆, HC₃N and C₂N₂ in Titan’s upper atmosphere. Upper limits are put for other minor species. The globally averaged distribution of N₂, CH₄ and H₂ are each modeled with the diffusion approximation. The N₂ profile suggests an average thermospheric temperature of 154 K. The CH₄ and H₂ distribution constrains their fluxes to be 3.0×10⁹ cm⁻² s⁻¹ and 1.3×10¹⁰ cm⁻² s⁻¹, referred to Titan’s surface. The H₂ escape flux is about a factor of ∼3 higher than the Jeans value, which is interpreted as enhanced thermal escape driven primarily by an upward conductive heat flux. Such a conclusion is based on kinetic model calculations in the 13-moment approximation that require energy continuity at the upper boundary. On the other hand, a proper interpretation of the observed CH4 escape has to rely on the detailed nonthermal processes, which are still unknown at the present time. The INMS observations of the nitrogen isotope ratio implies ¹⁴N/¹⁵N= 131.6 near Titan’s surface. The profile of carbon isotope ratio combining INMS and GCMS results implies that both CH₄ and its isotope escape from Titan’s exobase with roughly the same drift velocity, in contrast to the Jeans case which requires that CH₄ escapes with a much larger velocity due to its smaller mass. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan’s thermosphere. The equatorial regions, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidences for the depletion of light species such as CH₄. Meridional variations of most heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solardriven models or plasma-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing, With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.
机译:在这篇论文中,我将深入研究泰坦高层大气中各种中性物种的分布,其中丰富物种(N 2,CH 3及其同位素)的海拔高度在950至1,500 km之间,而大多数物种在950至1200 km之间小种。但是,关于泰坦上H2分布的研究扩展到了外层大气中高达6,000 km的高度。该分析基于在Titan的15次近距离掠过过程中获得的CSN(封闭源中性)模式下的大量Cassini / INMS(离子中性质谱仪)测量结果。包括N 2,CH 3和H 2在内的丰富物种的密度直接从其主要通道确定。但是,为了解开次要物种的重叠开裂模式,奇异值分解(SVD)技术用于同时确定各种碳氢化合物,腈和氧化合物的密度。除⁴⁰Ar外,所有次要物种在出站腿部均表现出密度增强。这可以解释为壁效应的结果,壁效应可能是腔室壁上的吸附/解吸或异质表面化学。在本文中,我使用一个简单的模型来描述观察到的小物种的时间行为。根据直接入站测量(假定夯压力增加)和针对壁吸附/解吸校正的值,提供了其大气丰度的结果。在所有对光化学感兴趣的次要物种中,INMS数据直接提供了泰坦高层大气中C 2 H 2,C 2 H 4,C 2 H 4,CH 3 C 2 H,C 3 H 2,C 3 H 4,HC 3 N和C 2 N 2的直接观察证据。对其他次要物种设定了上限。 N 2,CH 3和H 2的全局平均分布分别用扩散近似法模拟。 N 2分布表明平均热圈温度为154K。CH2和H 2的分布将其通量限制为3.0×10 7 cm -2 s -1和1.3 x 10 10 cm -2 s -1,以土卫六的表面为基准。 H 2逸出通量比Jeans值高约3倍,这被解释为主要由向上传导的热通量驱动的增强的热逸出。这样的结论是基于在13矩近似中的动力学模型计算,该模型需要在上边界处具有能量连续性。另一方面,对观测到的CH4逸出的正确解释必须依靠详细的非热过程,目前尚不知道。 INMS对氮同位素比的观察表明,土卫六表面附近的⁴N /⁵N = 131.6。结合INMS和GCMS结果的碳同位素比分布图表明,CH 3及其同位素都以大致相同的漂移速度从泰坦外生碱中逸出,而Jeans案例则要求CH 3由于质量更小而以更大的速度逸出。 INMS数据还显示了泰坦热圈中温度和中性气体分布的水平/昼夜变化。土卫六的赤道区域,山腰和夜半球似乎更热,并提供了一些证据证明诸如CH 3的轻质物种已经枯竭。还观察到大多数重物种的子午线变化,并有向北极消耗的趋势。尽管上述某些变化可能是由太阳驱动模型或等离子驱动模型解释的,但仍然缺少以一致方式协调所有观测到的水平/日变化的物理场景,并仔细评估了受限采样的影响,则INMS数据中显示的某些功能更可能是观测偏差。

著录项

  • 作者

    Cui Jun;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号