首页> 外文OA文献 >Reentrant waves in excitable media.
【2h】

Reentrant waves in excitable media.

机译:可折入介质中的折返波。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation presents a study of instabilities in the propagation of excitation pulses within spatially-distributed models of cardiac reentry. In one-dimensional closed rings, I study the onset of oscillations in the dynamics of circulating pulses as the ring length is decreased. In two-dimensional sheets, I analyze the spontaneous breakup of rotating spiral waves. In both cases, numerical results illustrating the instability phenomena are obtained using simulations of a partial differential equation (PDE) that models cardiac electrical activity using the Beeler-Reuter (BR) equations. The properties of the PDE model are summarized using the restitution and dispersion curves. The restitution curve gives the dependence of the pulse duration on the recovery time, defined as the elapsed time between the onset of an excitation pulse and the end of the previous excitation pulse. The dispersion curve gives the dependence of the pulse speed on the recovery time. I use these two properties to construct simplified models aimed at capturing the essence of the instabilities observed in the PDE. On the ring, I derive an integral-delay equation for the evolution of the recovery time as a function of the distance along the ring that incorporates the restitution and the dispersion curves. Numerical simulations and bifurcation analysis of the delay equation explain and predict the dynamics of the PDE. In two-dimensions, I extend early work that presented the first clear demonstration of spiral wave breakup in a reasonable discretization of a continuous PDE model of cardiac propagation. Spiral breakup can be observed in the BR model, depending on the value of a parameter controlling the duration of the electrical pulses. I study the appearance of spiral wavebreaks and relate it to the change in restitution properties of the BR equations as the parameter is varied. Finally, the effects of restitution and dispersion in two dimensions are examined in a discrete space/continuous time model of cardiac propagation. Results about the dependence of the propagation speed on the excitation threshold and on the excitation front curvature are obtained analytically. Inclusion of restitution relations derived from the BR equations into this simple model can give rise to spiral wavebreaks.
机译:本文提出了在心脏折返的空间分布模型内激发脉冲传播不稳定性的研究。在一维封闭环中,我研究了随着环长度的减小,循环脉冲动力学中的振荡开始。在二维图纸中,我分析了旋转螺旋波的自发破裂。在这两种情况下,使用偏微分方程(PDE)的仿真均获得了说明不稳定性现象的数值结果,该偏微分方程使用Beeler-Reuter(BR)方程对心脏电活动进行建模。使用恢复和弥散曲线总结了PDE模型的属性。恢复曲线给出了脉冲持续时间与恢复时间的关系,恢复时间定义为激发脉冲开始到前一个激发脉冲结束之间的经过时间。色散曲线给出了脉冲速度对恢复时间的依赖性。我使用这两个属性来构造简化模型,以捕获PDE中观察到的不稳定性的本质。在圆环上,我导出了一个积分延迟方程,用于恢复时间的演化,该方程是沿着圆环的距离的函数,其中包括恢复和色散曲线。延迟方程的数值模拟和分叉分析可以解释和预测PDE的动力学。在二维中,我扩展了早期工作,该工作在对心脏传播的连续PDE模型进行合理离散的基础上,首次明确证明了螺旋波破裂。在BR模型中可以观察到螺旋破裂,这取决于控制电脉冲持续时间的参数的值。我研究了螺旋波的出现,并将其与BR方程的恢复特性随参数的变化而变化相关。最后,在心脏传播的离散空间/连续时间模型中检查了二维恢复和分散的影响。通过分析获得关于传播速度对激励阈值和激励前沿曲率的依赖性的结果。将源自BR方程的恢复关系包括在此简单模型中会引起螺旋波状波折。

著录项

  • 作者

    Courtemanche Marc.;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号