首页> 外文OA文献 >Practical Considerations In Experimental Computational Sensing
【2h】

Practical Considerations In Experimental Computational Sensing

机译:实验计算感测的实际考虑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational sensing has demonstrated the ability to ameliorate or eliminate many trade-offs in traditional sensors. Rather than attempting to form a perfect image, then sampling at the Nyquist rate, and reconstructing the signal of interest prior to post-processing, the computational sensor attempts to utilize a priori knowledge, active or passive coding of the signal-of-interest combined with a variety of algorithms to overcome the trade-offs or to improve various task-specific metrics. While it is a powerful approach to radically new sensor architectures, published research tends to focus on architecture concepts and positive results. Little attention is given towards the practical issues when faced with implementing computational sensing prototypes. I will discuss the various practical challenges that I encountered while developing three separate applications of computational sensors. The first is a compressive sensing based object tracking camera, the SCOUT, which exploits the sparsity of motion between consecutive frames while using no moving parts to create a psuedo-random shift variant point-spread function. The second is a spectral imaging camera, the AFSSI-C, which uses a modified version of Principal Component Analysis with a Bayesian strategy to adaptively design spectral filters for direct spectral classification using a digital micro-mirror device (DMD) based architecture. The third demonstrates two separate architectures to perform spectral unmixing by using an adaptive algorithm or a hybrid techniques of using Maximum Noise Fraction and random filter selection from a liquid crystal on silicon based computational spectral imager, the LCSI. All of these applications demonstrate a variety of challenges that have been addressed or continue to challenge the computational sensing community. One issue is calibration, since many computational sensors require an inversion step and in the case of compressive sensing, lack of redundancy in the measurement data. Another issue is over multiplexing, as more light is collected per sample, the finite amount of dynamic range and quantization resolution can begin to degrade the recovery of the relevant information. A priori knowledge of the sparsity and or other statistics of the signal or noise is often used by computational sensors to outperform their isomorphic counterparts. This is demonstrated in all three of the sensors I have developed. These challenges and others will be discussed using a case-study approach through these three applications.
机译:计算感测已显示出改善或消除传统传感器中许多折衷的能力。计算传感器不是尝试形成完美的图像,而是以奈奎斯特速率采样,然后在进行后处理之前重构感兴趣的信号,而是尝试利用先验知识,对感兴趣的信号进行主动或被动编码使用各种算法来克服折衷或改善各种特定于任务的指标。尽管这是一种用于全新传感器架构的强大方法,但已发表的研究倾向于将重点放在架构概念和积极成果上。当面对实现计算感测原型时,很少关注实际问题。我将讨论在开发三个独立的计算传感器应用程序时遇到的各种实际挑战。第一个是基于压缩感测的物体跟踪相机SCOUT,它利用连续帧之间的运动稀疏性,而无需使用任何运动部件来创建伪随机位移变点扩展功能。第二个是光谱成像相机AFSSI-C,它使用具有贝叶斯策略的主成分分析的修改版本,使用基于数字微镜设备(DMD)的体系结构自适应地设计光谱滤光片,用于直接光谱分类。第三部分演示了两种独立的体系结构,它们可以通过使用自适应算法或混合技术来执行频谱分解,该算法使用最大噪声分数和从基于硅的计算光谱成像器LCSI上的液晶中随机选择滤波器。所有这些应用都证明了已经解决或继续挑战计算感测社区的各种挑战。一个问题是校准,因为许多计算传感器需要一个反演步骤,并且在压缩感测的情况下,测量数据缺乏冗余。另一个问题是多路复用,因为每个样本收集的光更多,因此有限的动态范围和量化分辨率可能会开始降低相关信息的恢复能力。计算传感器经常使用信号或噪声的稀疏性和/或其他统计的先验知识来胜过其同构对应物。我开发的所有三个传感器都证明了这一点。将通过案例研究方法通过这三个应用程序讨论这些挑战和其他挑战。

著录项

  • 作者

    Poon Phillip K.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号