首页> 外文OA文献 >Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method
【2h】

Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method

机译:能量-卡西米尔方法对2n维自由刚体的一般平衡的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rigid body has been one of the most noteworthy applications of Newtonian mechanics. Applying the principles of classical mechanics to the rigid body is by no means routine. The equations of motion, though discovered two hundred and fifty years ago by Euler, have remained quite elusive since their introduction. Understanding the rigid body has required the applications of concepts from integrable systems, algebraic geometry, Lie groups, representation theory, and symplectic geometry to name a few. Moreover, several important developments in these fields have in fact originated with the study of the rigid body and subsequently have grown into general theories with much wider applications.In this work, we study the stability of equilibria of non-degenerate orbits of the generalized rigid body. The energy-Casimir method introduced by V.I. Arnold in 1966 allows us to prove stability of certain non-degenerate equilibria of systems on Lie groups. Applied to the three dimensional rigid body, it recovers the classical Euler stability theorem [12]: rotations around the longest and shortest principal moments of inertia are stable equilibria. This method has not been applied to the analysis of rigid body dynamics beyond dimension n = 3. Furthermore, no conditions for the stability of equilibria are known at all beyond n = 4, in which case the conditions are not of the elegant longest/shortest type [10].Utilizing the rich geometric structures of the symmetry group G = SO(2n), we obtain stability results for generic equilibria of the even dimensional free rigid body. After obtaining a general expression for the generic equilibria, we apply the energy-Casimir method and find that indeed the classical longest/shortest conditions on the entries of the inertia matrix are suffcient to prove stability of generic equilibria for the generalized rigid body in even dimensions.
机译:刚体一直是牛顿力学最值得注意的应用之一。将经典力学原理应用于刚体绝非常规。运动方程式虽然是在250年前由Euler发现的,但自引入以来一直难以捉摸。要了解刚体,需要应用可积系统,代数几何,李群,表示论和辛几何等概念。此外,这些领域中的一些重要发展实际上起源于刚体的研究,后来发展成为具有更广泛应用的通用理论。在这项工作中,我们研究了广义刚体的非简并轨道的平衡稳定性。身体。 V.I.提出的Energy-Casimir方法1966年的Arnold让我们证明了Lie群上系统的某些非退化系统的稳定性。应用于三维刚体,它恢复了经典的欧拉稳定性定理[12]:围绕最长和最短主惯性矩的旋转是稳定的平衡。此方法尚未应用于尺寸n = 3以外的刚体动力学分析。此外,在n = 4之外,完全没有平衡稳定条件,在这种情况下,条件不是最长/最短的优雅条件类型[10]。利用对称群G = SO(2n)的丰富几何结构,我们获得了偶数维自由刚体的一般平衡的稳定性结果。在获得一般平衡的一般表达式后,我们应用了能量-Casimir方法,发现惯性矩阵项上的经典最长/最短条件确实足以证明均匀刚度上广义刚体的一般平衡的稳定性。

著录项

  • 作者

    Spiegler Adam;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号