首页> 外文OA文献 >Raman Spectroscopic Investigations of the Interfacial Chemistry of Solid-State Organic Thin Films with Vapor Deposited Metals for Organic Photovoltaics
【2h】

Raman Spectroscopic Investigations of the Interfacial Chemistry of Solid-State Organic Thin Films with Vapor Deposited Metals for Organic Photovoltaics

机译:固态气相沉积有机薄膜与有机光伏的界面化学的拉曼光谱研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is focused on the elucidation of the reaction chemistry that governs the low work function metal/organic interface found in organic photovoltaics (OPVs). To this end Raman spectroscopy was used in ultra-high vacuum to study Ag, Mg, Ca, and Al metal vapor deposition on pyridine, C₆₀, and graphene. In an effort to understand the interfacial reaction chemistry of complex organic molecules with metal an approach of systematic deconstruction is used where by small molecules, in this case pyridine can be used to gain insight into the chemistry of various chemical functionalities with minimal spectral complication. In the Ag/pyridine system no reaction was observed and the integrity of the film was preserved with spectral enhancement being the only result. This enhancement is achieved via a weak Ag--N bonding interaction. For the other three metals (Mg, Ca, and Al) a great deal of fascinating reaction chemistry can be observed initiated in each case by metal-to-organic electron transfer resulting in the formation of pyridyl radical anions. Once radicals are formed the reaction pathways for each metal diverge resulting in different specific reaction products. In the case of Mg the pyridyl radicals undergo reductive dimerization and yield 4,4'-bipyridine. For Ca the pyridyl radicals follow two pathways either losing a hydride to form the diradical pyridyne or through a pathway of ring opening degrade into amorphous carbon. These results highlight the vast differences possible for reaction chemistry between metals and organics even for simple molecules. Buckminsterfullerene (C₆₀) and fullerene derivatives are ubiquitous to the field of OPVs, thus an understanding of their metal/organic interfacial chemistry is of critical importance to unlocking the full potential of devices. In a similar manner to what can be observed for Ag/pyridine systems the Ag/C₆₀ system shows little more than surface enhancement effects due to a lack of any substantial reactivity and Mg, Ca, and Al exhibit metal-to-organic charge transfer forming C60 anion radicals. These anion radical react to form an as of yet unidentified reaction product in the case of all three reactive metals and in the case of Al these reaction products further degrade forming amorphous carbon. The understanding of this chemistry can be directly correlated to device data found in the literature and provides insight into the formation of interfacial gape states at the metal/organic interface of OPVs. Due to its unique electrical properties and high degree of mechanical stability graphene is starting to play a significant role in the development of OPVs. Because graphene is being used in contact with vapor deposited metal it is of relevance to understand the chemistry that occurs at this interface. While deposition of Ag onto graphene again shows no reaction and only enhancement the enhancement leads to the identification of unique defects in the graphene lattice namely carbon vacancies and C--C bond rotations which lead to Stone-Wales defects which are likely a result of the graphene growth method. Mg, Ca, and Al show strong evidence for n-type doping of electrons into the graphene film due to their work functions being lower than graphene. This data highlight the stability of graphene showing that even though it undergoes a similar metal-to-organic electron transfer as seen with C₆₀ and pyridine there is no further compromise of the films molecular structure.
机译:本论文的重点是阐明控制在有机光伏(OPV)中发现的低功函金属/有机界面的反应化学。为此,在超高真空中使用拉曼光谱研究了在吡啶,C 3和石墨烯上的Ag,Mg,Ca和Al金属气相沉积。为了理解复杂的有机分子与金属的界面反应化学,使用了系统分解的方法,其中对于小分子,在这种情况下,吡啶可用于以最小的光谱复杂性来洞察各种化学功能的化学。在Ag /吡啶体系中,未观察到反应,并且保留了膜的完整性,仅有光谱增强。这种增强是通过弱的Ag-N键相互作用实现的。对于其他三种金属(Mg,Ca和Al),可以观察到大量令人着迷的化学反应,在每种情况下都是通过金属与有机电子的转移引起吡啶基自由基阴离子的形成。一旦形成自由基,每种金属的反应途径就会不同,从而导致不同的特定反应产物。在镁的情况下,吡啶基进行还原二聚并产生4,4′-联吡啶。对于Ca,吡啶基自由基遵循两条途径,要么失去氢化物以形成双自由基吡啶基,要么通过开环途径降解为无定形碳。这些结果表明,即使是简单分子,金属和有机物之间的化学反应也可能存在巨大差异。 Buckminsterfullerene(C₆₀)和富勒烯衍生物在OPV领域无处不在,因此了解它们的金属/有机界面化学对释放设备的全部潜力至关重要。以类似于对Ag /吡啶体系所观察到的方式,由于缺乏任何实质的反应性,Ag / C 3体系仅表现出表面增强作用,并且Mg,Ca和Al表现出金属-有机电荷转移形成C60阴离子自由基。在所有三种反应性金属的情况下,这些阴离子自由基反应形成至今尚未确定的反应产物,而在Al的情况下,这些反应产物进一步降解形成非晶碳。对这种化学反应的理解可以直接与文献中发现的器件数据相关,并提供对OPVs金属/有机界面上界面气隙状态形成的见解。由于其独特的电性能和高度的机械稳定性,石墨烯开始在OPV的开发中发挥重要作用。由于石墨烯正与气相沉积的金属接触,因此了解在此界面处发生的化学反应至关重要。尽管Ag再次沉积在石墨烯上没有反应,仅增强作用导致识别出石墨烯晶格中的独特缺陷,即碳空位和C-C键旋转,这可能导致Stone-Wales缺陷,这可能是由于石墨烯生长法。 Mg,Ca和Al由于电子的功函低于石墨烯,因此有很强的证据表明电子会向石墨烯薄膜中进行n型掺杂。该数据强调了石墨烯的稳定性,表明尽管石墨烯经历了与C 6和吡啶相似的金属-有机电子转移,但膜分子结构没有进一步的损害。

著录项

  • 作者

    Matz Dallas Lee;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号