首页> 外文OA文献 >MODELING RELIABILITY IMPROVEMENT DURING DESIGN (RELIABILITY GROWTH, BAYES, NON PARAMETRIC).
【2h】

MODELING RELIABILITY IMPROVEMENT DURING DESIGN (RELIABILITY GROWTH, BAYES, NON PARAMETRIC).

机译:在设计过程中对可靠性改进进行建模(可靠性增长,贝氏(Bayes),非参数)。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Past research into the phenomenon of reliability growth has emphasised modeling a major reliability characteristic in terms of a specific parametric function. In addition, the time-to-failure distribution of the system was generally assumed to be exponential. The result was that in most cases the improvement was modeled as a nonhomogeneous Poisson process with intensity λ(t). Major differences among models centered on the particular functional form of the intensity function. The popular Duane model, for example, assumes that λ(t) = β(1 – α)t ⁻ᵅ. The inability of any one family of distributions or parametric form to describe the growth process resulted in a multitude of models, each directed toward answering problems encountered with a particular test situation. This thesis proposes two new growth models, neither requiring the assumption of a specific function to describe the intensity λ(t). Further, the first of the models only requires that the time-to-failure distribution be unimodal and that the reliability become no worse as development progresses. The second model, while requiring the assumption of an exponential failure distribution, remains significantly more flexible than past models. Major points of this Bayesian model include: (1) the ability to encorporate data from a number of test sources (e.g. engineering judgement, CERT testing, etc.), (2) the assumption that the failure intensity is stochastically decreasing, and (3) accountability of changes that are incorporated into the design after testing is completed. These models were compared to a number of existing growth models and found to be consistently superior in terms of relative error and mean-square error. An extension to the second model is also proposed that allows system level growth analysis to be accomplished based on subsystem development data. This is particularly significant, in that, as systems become larger and more complex, development efforts concentrate on subsystem levels of design. No analysis technique currently exists that has this capability. The methodology is applied to data sets from two actual test situations.
机译:过去对可靠性增长现象的研究已强调根据特定的参数函数对主要的可靠性特征进行建模。此外,系统的故障时间分布通常被假定为指数分布。结果是,在大多数情况下,将改进建模为强度为λ(t)的非均匀泊松过程。模型之间的主要差异集中在强度函数的特定函数形式上。例如,流行的Duane模型假设λ(t)=β(1 –α)t⁻ᵅ。任何一种分布或参数形式的族都无法描述增长过程,因此产生了许多模型,每个模型都针对解决特定测试情况下遇到的问题。本文提出了两个新的增长模型,都不需要假设特定函数来描述强度λ(t)。此外,第一个模型仅要求失效时间的分布是单峰的,并且随着开发的进行,可靠性不会变差。第二个模型虽然需要假设指数失效分布,但比过去的模型要灵活得多。贝叶斯模型的主要优点包括:(1)合并来自多个测试源(例如,工程判断,CERT测试等)的数据的能力;(2)假设故障强度正在随机减小的假设;以及(3) )测试完成后纳入设计的变更的责任。将这些模型与许多现有的增长模型进行了比较,发现它们在相对误差和均方误差方面始终具有优越性。还提出了第二个模型的扩展,该模型允许基于子系统开发数据来完成系统级增长分析。这一点特别重要,因为随着系统变得越来越大和越来越复杂,开发工作集中在子系统的设计级别上。当前不存在具有此功能的分析技术。该方法适用于来自两个实际测试情况的​​数据集。

著录项

  • 作者

    ROBINSON DAVID GERALD.;

  • 作者单位
  • 年度 1986
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号