首页> 外文OA文献 >IN SITU ELECTROKINETIC SAMPLE PREPARATION FOR SELF-ASSEMBLED MONOLAYER BASED ELECTROCHEMICAL BIOSENSING
【2h】

IN SITU ELECTROKINETIC SAMPLE PREPARATION FOR SELF-ASSEMBLED MONOLAYER BASED ELECTROCHEMICAL BIOSENSING

机译:基于自组装单分子层电化学生化的原位电动力学样品制备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrokinetics based microfluidic systems are potentially promising for lab-on-a-chip applications due to their effectiveness in manipulating nanoscale and biological objects, label-free operation, simple fabrication processes, small voltage requirements, and most importantly simple system integration strategy. Among various electrokinetics techniques, AC electrothermal flow (ACEF) is the most promising technique in microfluidic manipulation toward biomedical applications due to its effectiveness in high conductivity biological and physiological fluids. As relatively little is known about the ACEF induced fluid motion at highly conductive samples, the characteristics of electrothermal manipulation of fluid samples with different conductivities were investigated systematically. For low conductivity sample (below 1 S/m), the characteristics of the electrothermal fluid motion was in quantitative agreement with the theory. For high conductivity samples (greater than 1 S/m), the fluid motion appeared to deviate from the model as a result of electrochemical reactions and the temperature effect. Here, a universal electrode approach which directly implements ACEF-induced sample preparation on a SAM based electrochemical sensor for point-of-care diagnostics of urinary tract infections has also been demonstrated. Using uropathogenic E. coli clinical isolates as model systems, we demonstrate that "on-chip" ACEF-induced sample preparation can improve the sensor performance without complicated system integration strategy and presents a pathway for implementing truly lab on a chip, instead of chip in a lab. Finally an integrated chip approach has been proposed for transforming electrochemical sensing system from laboratory research into point-of-care diagnostics with multiple microelectrodes.
机译:由于基于电动动力学的微流体系统在操纵纳米级和生物物体方面的有效性,无标签操作,简单的制造工艺,较小的电压要求以及最重要的是简单的系统集成策略,因此有望用于芯片实验室应用。在各种电动技术中,由于交流电热流(ACEF)在高电导率的生物和生理流体中的有效性,因此是微流控技术在生物医学应用中最有希望的技术。由于对ACEF引起的高导电性样品运动的了解相对较少,因此系统地研究了电导率不同的样品的电热操作特性。对于低电导率样品(低于1 S / m),电热流体运动的特征与理论定量吻合。对于高电导率样品(大于1 S / m),由于电化学反应和温度效应,流体运动似乎偏离了模型。在此,还展示了一种通用电极方法,该方法可在基于SAM的电化学传感器上直接实施ACEF诱导的样品制备,以进行尿道感染的即时诊断。使用尿路致病性大肠杆菌临床分离株作为模型系统,我们证明了“芯片上” ACEF诱导的样品制备可以提高传感器性能,而无需复杂的系统集成策略,并提供了在芯片上而非芯片上实施真正实验室的途径一个实验室。最后,提出了一种集成芯片方法,用于将电化学传感系统从实验室研究转变为具有多个微电极的即时诊断。

著录项

  • 作者

    Sin Lai Yi Mandy;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号