首页> 外文OA文献 >構成可変光ファイバ通信システムのための多波長光信号処理機能
【2h】

構成可変光ファイバ通信システムのための多波長光信号処理機能

机译:可重构光纤通信系统的多波长光信号处理功能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the continuing emergence of high-bandwidth and on-demand applications, next-generation optical network will require significant improvements in terms of capacity, reconfigurability, and energy efficiency. These challenges call for developing optical networks capable of flexibly handling a higher capacity while consuming even less power than present. In searching for solutions of providing very high capacity and reconfigurability and energy efficiency, optical signal processing appear to be one of the enabling technologies due to its possibility for high-bandwidth applications and better scalability than electronics. This thesis concentrates on realizing multiwavelength signal processing architectures, providing key functionalities in wavelength division multiplexed (WDM) and optical time division multiplexed (OTDM) systems and networks. To implement desired optical functions for multiple channels, various optical nonlinearities in fibers and/or semiconductor optical amplifier (SOA) such as self-phase modulation (SPM), cross-phase modulation (XPM), cross-gain modulation (XGM), four wave mixing (FWM), and stimulated Raman scattering (SRS) are utilized selectively. Since the nonlinear e ects often occur at the same time, while a nonlinear e ect is in action, techniques to suppress the others are applied. Work of this thesis can be divided into three parts, addressing important issues for realization of reconfigurable WDM/OTDM networks. In the first part, a multiwavelength optical signal processor performing wavelength-waveform conversions, pulsewidth tunability, and signal regeneration is realized simultaneously through AND logic gate based on fiber-based parametric processing. The provided functions are desirable at WDM network nodes. It is necessary to implement optical switching of a group of wavelengths, at the same time, requires to mitigate the e ect of changes in transmission parameters of links before and after switching since the lightpaths are changed from time to time. Therefore, it is particularly desirable to integrate more functionalities into a single processing scheme, the socalled multi-channel multi-function optical signal processor (MCMF-OPS). It will be indicated that while switching multiple wavelengths to di erent wavelengths, the proposed MCMF-OPS presents large regenerations against timing jitter and signal distortions due to fiber dispersion and narrow filtering e ect for the incoming signals. Meanwhile, the pulsewidth tunability significantly improves the transmission performance for the outgoing signals via pulsewidth mani agement. The second part, on the other hand, focuses on inline multiwavelength processing with possibility of providing good channel quality even under the dynamic environment of optical paths while maintaining path wavelengths. The processing systems demonstrated in this part are based on a semiconductor optical amplifier (SOA) due to its distinctive properties compared to other photonic materials. Using SOA for multiwavelength systems faces some challenges due to the overwhelming influence of nonlinear crosstalks, especially as the number of channels increase. To overcome the problem, we introduce a technique of holding beam to suppress the e ect of interactions amongWDMchannels, leading to an enhanced input power dynamic range (IPDR) for SOA-based multiwavelength systems including optical amplification and optical signal processing based on XGM, and XPM. A more important aspect of optical signal processing is parallel multiwavelength processing which is capable of providing controllability into individual WDM channels. Parallel multiwavelength processing opens way for inline path processing at network nodes through which there may exist di erent lightpaths with di erent modulation format originating from and departing to di erent nodes without the need of wavelength conversion. To realize such a signal processor, we propose a multiple switching-window optical gate (MWOG), which is a compatible version of the conventional Sagnac interferometric switch. MW-OG o ers independent tunability of switching windows in wide range from 20% to 80% duty ratio at di erent wavelengths. The use of MW-OG for inline signal processing in a mixed NRZ and RZ data format transmission network shows significant improvement in transmission performance of optical paths due to regeneration and inline pulsewidth management by the proposed MW-OG. Finally, the third part is devoted to realization of a photonic gateway between a WDM network and an ultrafast OTDM LAN. It is still a technical challenge, yet immense importance, to construct an OTDM LAN o ering ultrahigh speed connections among users without any opticalelectronic-optical (O/E/O) devices that coexisted with conventional LANs. A emphasis is placed on providing a flexible transmultiplexing between OTDM and WDM networks. We will see that key to the success of such a gateway are a reconfigurable multiwavelength pulse compressor performing as a central synchronization controlling system responsible for the operation of the whole gateway. Nonlinear pulse compression techniques based on Raman amplifier or/and SPM are used to compress multiwavelenth clock and data pulses down to picosecond and subpicosecond ranges, o ering a compression factor up to 40 fold. Then, the compressed pulse source plays an active role for demonstrations of OTDM-to-WDM and WDM-to-OTDM conversions using multiwavelength sampling in fiber. The proposed converters provide an increased degree of flexible for channel arrangement into WDM/OTDM grids which in other others, represent for functions of routing and wavelength assignment in optical networks.
机译:随着高带宽和按需应用的不断出现,下一代光网络将需要在容量,可重新配置性和能效方面进行重大改进。这些挑战要求开发能够灵活处理更高容量同时消耗比目前更少的功率的光网络。在寻找提供非常高的容量,可重构性和能效的解决方案时,光信号处理似乎是使能技术之一,因为它有可能用于高带宽应用和比电子产品更好的可扩展性。本文着重于实现多波长信号处理架构,在波分复用(WDM)和光时分复用(OTDM)系统和网络中提供关键功能。为了实现所需的多通道光学功能,光纤和/或半导体光放大器(SOA)中的各种光学非线性,例如自相位调制(SPM),交叉相位调制(XPM),交叉增益调制(XGM),四个选择性地利用了波混频(FWM)和受激拉曼散射(SRS)。由于非线性效应通常同时发生,而非线性效应在起作用,因此应用了抑制其他效应的技术。本文的工作可以分为三个部分,解决实现可重构WDM / OTDM网络的重要问题。在第一部分中,通过基于光纤的参数处理的AND逻辑门同时实现了执行波长-波形转换,脉冲宽度可调性和信号再生的多波长光信号处理器。提供的功能在WDM网络节点上是理想的。同时,必须进行一组波长的光交换,因为光路不时变化,因此需要减轻链路切换前后链路传输参数变化的影响。因此,特别希望将更多功能集成到单个处理方案中,即所谓的多通道多功能光信号处理器(MCMF-OPS)。将表明,在将多个波长切换到不同波长的同时,由于光纤色散和对输入信号的窄滤波效应,所提出的MCMF-OPS具有抵抗时序抖动和信号失真的大再生能力。同时,脉冲宽度可调性通过脉冲宽度管理显着提高了传出信号的传输性能。另一方面,第二部分着重于在线多波长处理,即使在光路的动态环境下也可以在保持路径波长的同时提供良好的信道质量。本部分中演示的处理系统基于半导体光放大器(SOA),因为与其他光子材料相比,它具有独特的性能。由于非线性串扰的压倒性影响,尤其是随着通道数量的增加,将SOA用于多波长系统面临一些挑战。为了解决这个问题,我们引入了一种保持光束的技术来抑制WDM通道之间的相互作用,从而为基于SOA的多波长系统提供了增强的输入功率动态范围(IPDR),包括基于XGM的光放大和光信号处理,以及XPM。光信号处理的一个更重要的方面是并行多波长处理,它能够为单个WDM通道提供可控性。并行多波长处理为网络节点上的内联路径处理开辟了道路,通过该路径可以存在源自和离开不同节点的具有不同调制格式的不同光路,而无需进行波长转换。为了实现这种信号处理器,我们提出了多开关窗口光闸(MWOG),它是传统Sagnac干涉式开关的兼容版本。 MW-OG在不同波长下的占空比范围从20%到80%不等,具有独立的可调性。 MW-OG在NRZ和RZ混合数据格式传输网络中用于在线信号处理的结果显示,由于所提出的MW-OG的再生和在线脉宽管理,光路的传输性能有了显着改善。最后,第三部分致力于实现WDM网络和超快速OTDM LAN之间的光子网关。这仍然是一项技术挑战,但意义非凡,以构建OTDM LAN,从而在用户之间建立超高速连接,而无需任何与传统LAN共存的光电子(O / E / O)设备。重点放在在OTDM和WDM网络之间提供灵活的多路复用。我们将看到,这种网关成功的关键是可重配置的多波长脉冲压缩器,它充当负责整个网关运行的中央同步控制系统。基于拉曼放大器或/和SPM的非线性脉冲压缩技术用于将多波长时钟和数据脉冲压缩至皮秒和亚皮秒范围,压缩系数高达40倍。然后,压缩脉冲源在使用光纤中的多波长采样的OTDM到WDM和WDM到OTDM转换的演示中发挥了积极作用。所提出的转换器为将信道安排到WDM / OTDM网格提供了更高程度的灵活性,而WDM / OTDM网格则代表了光网络中的路由和波长分配功能。

著录项

  • 作者

    NGUYEN TAN HUNG;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号