首页> 外文OA文献 >FPGAを用いたデータストリーム向けクエリ・アクセラレータの設計と評価
【2h】

FPGAを用いたデータストリーム向けクエリ・アクセラレータの設計と評価

机译:使用FPGA的数据流查询加速器的设计和评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important and growing class of applications requires to process online data streams on the fly in order to identify emerging trends in a timely manner. Data Stream Management Systems (DSMSs) deal with potentially infinite streams of data that should be processed for real-time applications, executing SQL-like continuous queries over data streams. In order to deliver real-time response for high-volume applications, there is currently a great deal of interest in the potential of using field-programmable gate arrays (FPGAs) as custom accelerators for continuous query processing over data streams. One of the previous studies focuses on sliding-window aggregate queries and shows how these queries can be implemented on an FPGA. Nevertheless, there still remain three practical issues related to the implementation of sliding-window aggregation. The first issue is that it is necessary to consider out-of-order arrival of tuples at a windowing operator. To address the issue, this work presents an order- agnostic implementation of a sliding-window aggregate query on an FPGA. The second issue is that a large number of overlapping sliding-windows cause severe scalability problems in terms of both perfor- mance and area. Instead of replicating a large number of aggregation modules, each sliding window is divided into non-overlapping sub-windows called panes. Results obtained in this work indicate that the pane-based approach can provide significant benefits in terms of performance (i.e., the maximum allow- able clock frequency), area (i.e., the hardware resource usage), and scalability. Finally, the third issue is that there is a lack of run-time configurability, which severely limits the practical use in a wide range of applications. To address the problem, the present study proposes a novel query accelerator, namely Configurable Query Processing Hardware (CQPH). CQPH is an FPGA-based query processor that con- tains a collection of configurable hardware modules, especially designed for sliding-window aggregate queries. As a proof of concept, a prototype of CQPH is implemented on an FPGA platform for a case study. Evaluation results indicate that the prototype implementation of CQPH with a Gigabit Ethernet interface can process a packet stream at wire-speed without packet loss. Since the Gigabit Ethernet is not sufficient to saturate the CQPH, a DDR3 SDRAM module is used as a high-speed data source. Results indicate that the prototype of CQPH can execute multiple queries simultaneously without sacrificing the performance (i.e., throughput) even if the data rate reached more than 10 Gbps.
机译:一类重要且不断增长的应用程序需要实时处理在线数据流,以便及时发现新兴趋势。数据流管理系统(DSMS)处理应为实时应用程序处理的潜在无限数据流,对数据流执行类似SQL的连续查询。为了为大批量应用提供实时响应,当前人们对使用现场可编程门阵列(FPGA)作为定制加速器进行数据流连续查询处理的潜力非常感兴趣。之前的一项研究着重于滑动窗口聚合查询,并展示了如何在FPGA上实现这些查询。然而,仍然存在与实施滑动窗口聚合有关的三个实际问题。第一个问题是,有必要考虑元组无序到达窗口运算符。为了解决这个问题,这项工作提出了FPGA上滑动窗口聚合查询的顺序不可知的实现。第二个问题是,大量重叠的滑动窗口会在性能和面积方面造成严重的可伸缩性问题。而不是复制大量的聚合模块,而是将每个滑动窗口划分为称为窗格的非重叠子窗口。这项工作中获得的结果表明,基于窗格的方法可以在性能(即最大允许时钟频率),面积(即硬件资源使用)和可伸缩性方面提供明显的好处。最后,第三个问题是缺少运行时可配置性,这严重限制了在各种应用程序中的实际使用。为了解决该问题,本研究提出了一种新颖的查询加速器,即可配置查询处理硬件(CQPH)。 CQPH是基于FPGA的查询处理器,其中包含一组可配置的硬件模块,这些模块专门设计用于滑动窗口聚合查询。作为概念验证,CQPH的原型在FPGA平台上实现,用于案例研究。评估结果表明,具有千兆以太网接口的CQPH的原型实现可以线速处理数据包流,而不会丢失数据包。由于千兆以太网不足以使CQPH饱和,因此DDR3 SDRAM模块用作高速数据源。结果表明,即使数据速率达到10 Gbps以上,CQPH的原型也可以同时执行多个查询,而不会牺牲性能(即吞吐量)。

著录项

  • 作者

    Oge Yasin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号