Wireless sensor networks and portable electronic devices, such as mobile phones, media players,digital cameras and iPods, require local electric power supplies. Although these devices areoperational all the time, they consume just a few milli-or micro-watts. This means energyharvesting from the environment is an attractive option for powering these devices. Mechanicalenergy harvesters can use electromagnet, electrostatic or piezoelectric approaches. Of these,electrostatic devices are found to be the most suitable approach for harvesting mechanical energysince they are compact, sensitive to low level mechanical energy, easier to integrate in smallscale systems, not requiring smart materials, simple to fabricate, inexpensive and simplystructured using less circuitry. Most of electrostatic harvesters proposed in previous studies usemechanical vibration. However, only a few studies have investigated harvesting rotationalmechanical energy. The objective of this thesis is to investigate the possibility of harvestingrotational mechanical energy from wind using the electrostatic approach. The proposal involvescapturing wind energy using a micro wind turbine then converting it into usable electricalenergy. This work first considers general design considerations and the design procedure thatmust be followed to construct a suitable electrostatic based wind energy harvester. Second, itdescribes the operating principles of various parts needed to design a novel efficient electrostaticharvesting system. The new harvester consists of a micro wind turbine, a gearbox, a multi-polevariable capacitor or capacitor array, an LC to LC energy transfer circuit, a capacitance sensingsystem and a microcontroller. The harvesting process has three main steps. First, wind energy iscaptured and converted into mechanical power using the micro wind turbine. Second, mechanicalpower is converted into electrical power using the variable capacitor in three phases: pre-charge,harvest and reset. Third, the electrical energy is processed and stored in a Lithium ion battery.The proposed harvester was simulated using Matlab/Simulink to study energy transferthroughout the three energy harvesting phases. Energy analysis was then carried out to study theeffect of varying the structure of the multi-pole capacitor on the amount of harvested energy.Results from the simulation for capacitance variation from 2.5 nF to 0.6 nF indicated that aneight-pole variable capacitor can produce 29.43 μJ/sec at a wind speed of 10 m/sec, while acapacitor array of the same capacitance variation with 10 capacitors in the array can produce 295μJ/sec at a wind speed of 10 m/sec. The results of experiments were carried out to test windharvesting using a two-pole capacitor proved that the proposed harvester is capable of poweringan RF transmitter to transmit wind speed information wirelessly.
展开▼
机译:无线传感器网络和便携式电子设备(例如手机,媒体播放器,数码相机和iPod)都需要本地电源。尽管这些设备一直在运行,但它们仅消耗几毫瓦或几微瓦的功率。这意味着从环境中收集能量是为这些设备供电的有吸引力的选择。机械能收集器可以使用电磁,静电或压电方法。其中,静电装置是紧凑的,对低级机械能敏感,易于集成到小型系统中,不需要智能材料,易于制造,价格便宜且结构简单且使用较少电路的设备,因此是最适合收集机械能的方法。先前研究中提出的大多数静电收割机都使用机械振动。然而,只有少数研究调查了收获旋转机械能。本文的目的是研究使用静电方法从风中获取旋转机械能的可能性。该提案涉及使用微型风力涡轮机捕获风能,然后将其转换为可用的电能。这项工作首先考虑了一般的设计考虑因素,以及构建合适的基于静电的风能采集器必须遵循的设计程序。其次,它描述了设计新颖高效的静电捕集系统所需的各个部分的工作原理。新的收割机包括一个微型风力涡轮机,一个变速箱,一个多极可变电容器或电容器阵列,一个LC到LC能量传输电路,一个电容传感系统和一个微控制器。收获过程包括三个主要步骤。首先,使用微型风力涡轮机捕获风能并将其转换为机械能。其次,使用可变电容器在三个阶段将机械功率转换为电能:预充电,收获和重置。第三,将电能进行处理并存储在锂离子电池中。使用Matlab / Simulink对拟议的收割机进行仿真,以研究在三个能量收集阶段的能量转移。然后进行了能量分析,研究了改变多极电容器结构对收获能量的影响.2.5 nF至0.6 nF电容变化的仿真结果表明,八极可变电容器可产生29.43μJ在风速为10 m / sec的情况下,每秒钟可产生295μJ/ sec的能量,而在阵列中具有10个电容器的电容变化相同的电容器阵列在风速为10 m / sec的情况下可产生295μJ/ sec。利用两极电容器对风能进行测试的实验结果证明,所提出的采集器能够为射频发射器供电,以无线方式传输风速信息。
展开▼