首页> 外文OA文献 >Organocatalysis via covalent and non covalent bonding: synthetic applications and mechanistic insights.
【2h】

Organocatalysis via covalent and non covalent bonding: synthetic applications and mechanistic insights.

机译:通过共价键和非共价键的有机催化:合成应用和机理见解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For full abstract, see thesis.The present work deals primarily with the development of two new reactions in which scaffold 2 was reacted under organocatalytic conditions.N-heterocyclic carbenes and Cinchona-based phase-transfer catalysts were both employed to promote elaboration of 1.We have shown that 4-nitro-5-styrylisoxazoles 2 (Figure 1) are excellent Michael acceptors that could be considered as synthetic equivalents to cinnamates. Indeed compound 2 reacted with soft nucleophiles exclusively at electrophilic centre E2 , while strong nucleophiles such as OH reacted exclusively at reactive centre E1. The Adamo group has worked for some time on these scaffolds demonstrating their synthetic utility.Figure 1. Styrylisoxazole properties.As part of this stream of research (Chapter 2), we have herein demonstrated that compound 2 reacted with homoenolates allowing access to a number of compounds 4 (Scheme 1). The reaction of cinnamaldéhydes under similar conditions gave many compounds, as more than one homoenolate was generated. The use of compound 2 in this reaction allowed this hurdle to be overcome, and compounds such as 4 were prepared as a single regioisomer and diastereomer. The synthetic utility of compounds 4 was further demonstrated by elaboration o f the 4-nitroisoxazole core into a carboxylate.Scheme 1. Planned synthesis of cyclopentanones 4Compounds 2 are excellent Michael acceptors under phase transfer catalysis which typically provided adducts with ee’s in the range 90-99%. This remarkable level of selectivity prompted us to investigate the mode of molecular recognition operating between Cinchona based PTC 5 (Figure 2) and reagents 2 (Chapter 3). These studies evidenced for the first time the presence of a primary C-H bond donor active in the Cinchona PTCs, i.e. 1H-NMR titration conducted on Cinchona PTC 5 with ligands 6-13 (Figure 3) allowed us determine a scale of ligand-PTC affinity (Table 1) which correlates with the results obtained by us and others in Cinchona mediated enantioselective processes. This study validated many mechanistic proposals put forward to explain the origin of enantioselectivity of PTC catalysed processes and several molecular modelling studies in this area. Importantly we have evidence that the mode by which Cinchona PTC interacts with opportune ligands is strongly dependent on structure, type and number of H-Bond acceptors present in the ligand. Therefore, a single mechanistic rationale explaining all the data available for this class of reagents is unrealistic. The data we have collected are therefore useful to clarify on a case-by-case basis the specific recognition mode available to Cinchona PTCs.Figure 2. //-benzyl cinchoninium chloride PTC.Figure 3. Substrates used in the 1H-NMR titration as H-bond acceptorsIn order to set a scenario for the abovementioned studies, the first chapter of this present work (Chapter 1) features an in-depth analysis of the intermolecular forces that most lately were invoked to rationalise the origin of enantioselectivity in catalysis. This includes (a) Non classic H-Bonds, (b) π -type interactions and (c) halogen bonds among others.The last chapter (Chapter 4) describes our studies regarding the use of Phase Transfer Catalysis in the preparation of compounds 15a/b (Scheme 2), which were obtained as two separable diastereomers. An optimized set of conditions was determined to obtain compounds 15a/b in excellent isolated yields and in ees up to 74%. Peculiarly, diastereomers 15a and 15b were obtained in significantly different enantiomeric excesses. An explanation was provided invoking a base promoted diastereomeric interchange.Scheme 2. Preparation of γ-butyrolactone containing compounds.In conclusion, this work has provided new procedures for the preparation of compounds useful in drug discovery and production and has shed light on the peculiar mode of interaction of Cinchona based PTC with scaffold 2 and other commonly used reagents.
机译:有关完整的摘要,请参见论文。本工作主要涉及两个新反应的发展,其中支架2在有机催化条件下反应.N-杂环卡宾和金鸡纳基相转移催化剂均用于促进1。我们已经证明4-硝基-5-苯乙烯基恶唑2(图1)是出色的迈克尔受体,可以被认为是肉桂的合成等效物。实际上,化合物2仅在亲电子中心E2与软亲核试剂反应,而强亲核试剂(如OH)仅在反应中心E1反应。 Adamo研究组已经在这些支架上工作了一段时间,证明了它们的合成效用。图1.苯乙烯基恶唑的性质。作为这一研究流的一部分(第2章),我们在此证明了化合物2与均烯酸酯反应,可以接触到许多化合物4(方案1)。肉桂醛在相似条件下的反应产生了许多化合物,因为生成了一种以上的均烯酸酯。在该反应中使用化合物2克服了这一障碍,并且将诸如4的化合物制备为单一的区域异构体和非对映异构体。化合物4的合成用途通过将4-硝基异恶唑核精制成羧酸酯得到进一步证明。方案1.环戊酮4的计划合成在相转移催化下,化合物2是出色的迈克尔受体,通常可提供加合物,其ee值在90-99范围内%。如此高的选择性促使我们研究基于Cinchona的PTC 5(图2)和试剂2(第3章)之间的分子识别模式。这些研究首次证明了在金鸡纳PTC中具有活性的主要CH键供体,即在金鸡纳PTC 5上用配体6-13进行的1 H-NMR滴定(图3)使我们能够确定配体-PTC亲和力的规模。 (表1)与我们和其他人在金鸡纳介导的对映选择性过程中获得的结果相关。这项研究验证了许多机制建议,以解释PTC催化过程的对映选择性的起源以及该领域的一些分子建模研究。重要的是,我们有证据表明Cinchona PTC与合适的配体相互作用的方式在很大程度上取决于配体中H-Bond受体的结构,类型和数量。因此,解释这种试剂的所有可用数据的单一机械原理是不现实的。因此,我们收集的数据可用于逐案澄清Cinchona PTCs可用的特定识别模式。图2. //-苄基氯化金鸡宁PTC。图3. 1H-NMR滴定中使用的底物氢键受体为了为上述研究奠定基础,本工作的第一章(第1章)对分子间力进行了深入分析,最近才对分子间力进行了分析,以合理化催化中对映选择性的起源。其中包括(a)非经典氢键,(b)π型相互作用和(c)卤素键等。最后一章(第4章)介绍了我们在制备化合物15a中使用相转移催化的研究。 / b(方案2),以两种可分离的非对映异构体的形式获得。确定了一组优化的条件,以优异的分离收率和高达74%的ee获得化合物15a / b。特别地,以明显不同的对映体过量获得非对映体15a和15b。提供了一个基础促进的非对映异构交换的解释。方案2.包含γ-丁内酯的化合物的制备。总之,这项工作为制备可用于药物发现和生产的化合物提供了新的程序,并阐明了其独特的模式。基于Cinchona的PTC与支架2和其他常用试剂的相互作用。

著录项

  • 作者

    Salazar Illera Diana;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号