首页> 外文OA文献 >The quadratic relationship between difficulty of intelligence test items and their correlations with working memory
【2h】

The quadratic relationship between difficulty of intelligence test items and their correlations with working memory

机译:智力测验项目的难度及其与工作记忆的相关性的二次关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fluid intelligence (Gf) is a crucial cognitive ability that involves abstract reasoning in order to solve novel problems. Recent research demonstrated that Gf strongly depends on the individual effectiveness of working memory (WM). We investigated a popular claim that if the storage capacity underlay the WM-Gf correlation, then such a correlation should increase with an increasing number of items or rules (load) in a Gf-test. As often no such link is observed, on that basis the storage-capacity account is rejected, and alternative accounts of Gf (e.g., related to executive control or processing speed) are proposed. Using both analytical inference and numerical simulations, we demonstrated that the load-dependent change in correlation is primarily a function of the amount of floor/ceiling effect for particular items. Thus, the item-wise WM correlation of a Gf-test depends on its overall difficulty, and the difficulty distribution across its items. When the early test items yield huge ceiling, but the late items do not approach floor, that correlation will increase throughout the test. If the early items locate themselves between ceiling and floor, but the late items approach floor, the respective correlation will decrease. For a hallmark Gf-test, the Raven-test, whose items span from ceiling to floor, the quadratic relationship is expected, and it was shown empirically using a large sample and two types of WMC tasks. In consequence, no changes in correlation due to varying WM/Gf load, or lack of them, can yield an argument for or against any theory of WM/Gf. Moreover, as the mathematical properties of the correlation formula make it relatively immune to ceiling/floor effects for overall moderate correlations, only minor changes (if any) in the WM-Gf correlation should be expected for many psychological tests.
机译:流体智力(Gf)是一项至关重要的认知能力,涉及抽象推理以解决新问题。最近的研究表明,Gf强烈依赖于工作记忆(WM)的个体有效性。我们调查了一个流行的说法,即如果存储容量成为WM-Gf相关性的基础,那么在Gf测试中,这种相关性应随着项目或规则(负载)的增加而增加。通常没有观察到这样的链接,因此在该基础上拒绝存储容量帐户,并提出了Gf的备用帐户(例如,与执行控制或处理速度有关)。通过使用分析推断和数值模拟,我们证明了相关性中与负载有关的变化主要是特定项目的地面/天花板效果量的函数。因此,Gf检验的逐项WM相关性取决于其总体难度,以及其各个项之间的难度分布。当早期的测试项目产生极大的上限,而后期的项目没有达到最低要求时,这种相关性将在整个测试中增加。如果早期项目位于天花板和地板之间,但后期项目接近地板,则各自的相关性将降低。对于标志性的Gf检验(即Raven检验),其项目从天花板到地板,其平方关系是预期的,并且使用大样本和两种WMC任务以经验方式显示该关系。结果,由于变化的WM / Gf负载或缺少它们而导致的相关性变化不会产生支持或反对任何WM / Gf理论的论点。此外,由于相关公式的数学性质使其对于整体适度相关而言相对不受天花板/地板效果的影响,因此对于许多心理测试而言,仅预期WM-Gf相关中的微小变化(如果有)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号