首页> 外文OA文献 >Path inequalities for the vehicle routing problem with time windows
【2h】

Path inequalities for the vehicle routing problem with time windows

机译:带时间窗的车辆路径问题的路径不等式

摘要

In this paper we introduce a new formulation of the vehicle routing problem with time windows (VRPTW) involving only binary variables. The new formulation is based on the formulation of the asymmetric traveling salesman problem with time windows by Ascheuer et al. and has the advantage of avoiding additional variables and linking constraints. In the new formulation, time windows are modeled using path inequalities that eliminate time and capacity infeasible paths. We present a new class of strengthened path inequalities based on the polyhedral results obtained by Mak for a variant of the TSP. We study the VRPTW polytope and determine its dimension. We show that the lifted path inequalities are facet defining under certain assumptions. We also introduce precedence constraints in the context of the VRPTW. Computational experiments are performed with a branch and cut algorithm on the Solomon test problems with wide time windows. Based on results on 25-node problems, the outcome is promising compared to leading algorithms in the literature. In particular, we report a solution to a previously unsolved 50-node Solomon test problem R208. The conclusion is therefore that a polyhedral approach to the VRPTW is a viable alternative to the path formulation of Desrochers et al.
机译:在本文中,我们介绍了一种仅包含二进制变量的带有时间窗(VRPTW)的车辆路径问题的新公式。新公式是基于Ascheuer等人的带有时间窗的非对称旅行商问题的公式。并具有避免其他变量和链接约束的优点。在新的公式中,时间窗口是使用路径不等式建模的,从而消除了时间和容量不可行的路径。我们基于Mak对于TSP变体获得的多面体结果,提出了一类新的强化路径不等式。我们研究VRPTW多表位并确定其尺寸。我们表明,在某些假设下,提升的路径不平等是刻面定义的。我们还在VRPTW的背景下介绍了优先约束。使用分支剪切算法对宽时窗的所罗门测试问题进行计算实验。根据有关25个节点的问题的结果,与文献中的领先算法相比,结果是有希望的。特别是,我们报告了先前未解决的50节点所罗门测试问题R208的解决方案。因此,得出的结论是,VRPTW的多面体方法可以替代Desrochers等人的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号