首页> 外文OA文献 >A bioinspired hierarchical reinforcement learning architecture for modeling learning of multiple skills with continuous state and actions
【2h】

A bioinspired hierarchical reinforcement learning architecture for modeling learning of multiple skills with continuous state and actions

机译:生物启发的分层强化学习体系结构,用于对具有连续状态和动作的多种技能的学习进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Organisms, and especially primates, are able to learn several skills while avoiding catastrophic interference and enhancing generalisation. This paper proposes a novel hierarchical reinforcement learning (RL) architecture with a number of features that make it suitable to investigate such phenomena. The proposed system combines the mixture of experts architecture with the neural-network actor-critic architecture trained with the TD() reinforcement learning algorithm. In particular, responsibility signals provided by two gating networks (one for the actor and one for the critic) are used both to weight the outputs of the respective multiple (expert) controllers and to modulate their learning. The system is tested with a simulated dynamic 2D robotic arm that autonomously learns to reach a target in (up to) three different conditions. The results show that the system is able to appropriately allocate experts to tasks on the basis of the differences and similarities among the required sensorimotor mappings.
机译:有机体,尤其是灵长类动物能够学习多种技能,同时避免灾难性干扰并增强概括性。本文提出了一种新颖的分层强化学习(RL)体系结构,该体系结构具有许多使其适合研究此类现象的功能。拟议的系统将专家架构与通过TD()强化学习算法训练的神经网络参与者批评架构相结合。特别是,由两个门控网络(一个用于演员,一个用于评论家)提供的责任信号既用于加权各个(专家)控制器的输出,又用于调节其学习。该系统使用模拟的动态2D机械手臂进行了测试,该手臂在3种不同条件下自主学习达到目标。结果表明,该系统能够根据所需的感觉运动映射之间的差异和相似性,将专家适当地分配给任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号