首页> 外文OA文献 >Intelligent Agent-Based Stimulation for Testing Robotic Software in Human-Robot Interactions
【2h】

Intelligent Agent-Based Stimulation for Testing Robotic Software in Human-Robot Interactions

机译:基于智能代理的刺激,用于在人机交互中测试机器人软件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The challenges of robotic software testing extend beyond conventional software testing. Valid, realistic and interesting tests need to be generated for multiple programs and hardware running concurrently, deployed into dynamic environments with people. We investigate the use of Belief-Desire-Intention (BDI) agents as models for test generation, in the domain of human-robot interaction (HRI) in simulations. These models provide rational agency, causality, and a reasoning mechanism for planning, which emulate both intelligent and adaptive robots, as well as smart testing environments directed by humans. We introduce reinforcement learning (RL) to automate the exploration of the BDI models using a reward function based on coverage feedback. Our approach is evaluated using a collaborative manufacture example, where the robotic software under test is stimulated indirectly via a simulated human co-worker. We conclude that BDI agents provide intuitive models for test generation in the HRI domain. Our results demonstrate that RL can fully automate BDI model exploration, leading to very effective coverage-directed test generation.
机译:机器人软件测试的挑战超越了常规软件测试。需要为同时运行的多个程序和硬件生成有效,现实和有趣的测试,并与人员一起部署到动态环境中。我们在模拟中的人机交互(HRI)领域中,研究了信念-愿望-意图(BDI)代理作为测试生成模型的使用。这些模型提供了合理的代理,因果关系以及用于计划的推理机制,可以模拟智能和自适应机器人,以及人类指导的智能测试环境。我们引入强化学习(RL),以基于覆盖范围反馈的奖励函数自动探索BDI模型。我们的方法是通过一个协作制造示例进行评估的,在该示例中,被测试的机器人软件是通过模拟的人工同事间接刺激的。我们得出结论,BDI代理为HRI域中的测试生成提供了直观的模型。我们的结果表明,RL可以完全自动化BDI模型探索,从而导致非常有效的覆盖率定向测试生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号