首页> 外文OA文献 >Improving Optical Trap Measurements with Adaptive Nonlinear Control Methods
【2h】

Improving Optical Trap Measurements with Adaptive Nonlinear Control Methods

机译:自适应非线性控制方法改善光学陷阱的测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An optical trap uses radiation pressure of light to manipulate microscopic objects. The interaction between the light and the microscopic objects result in the objects experiencing optical forces. These forces are on the same order of magnitude as biological forces (typically SIrange[range-units=single]{0.1}{100}{picoewton}) and this feature makes optical traps appropriate for single-molecule studies. Currently, there is a growing need to create an automated optical trap that uses the entire operating range of the optical trap to study the biological forces. Spatial nonlinearities in the optical force and parameter uncertainty complicate feedback control for optical traps. A consequence is that users are spending an enormous amount of time calibrating the instrument and designing a controller, and this diverts their time away from studying the biophysics. This research explores the use of nonlinear and adaptive feedback methods to create an automated optical trap. ududA model is defined to describe the coupling between the dynamics of the optical trap and molecule, and the nominal force within the molecule is treated as a disturbance. The disturbance information is obtained by creating a disturbance model and combining its dynamics with the system dynamics. The system nonlinearities are addressed by using a nonlinear Kalman filter to estimate the system state, then the system state is used in a input-output feedback linearization and linear quadratic structure to satisfy performacne requirements. Statistical analyses are performed to assess the effectiveness the feedback methods have on the open-loop and closed-loop systems. Its performance is compared with that of linear integral control used in practice to quantify the performance improvement when considering the system nonlinearities in the control design. The system nonlinearities and parameter uncertainty are addressed by using adaptive and nonlinear feedback methods. An adaptive state observer provides a simultaneous estimate of the system state and parameters, then these estimated entities are used in an adaptive input-output feedback linearization and LQ structure. The result is the creation of an automated self-tuning optical trap that minimizes the user interaction with the instrument calibration and control design, uses the entire operating range of the optical trap, and obtains an unbiased estimate of the molecule force. The closed-loop performance of these feedback methods are demonstrated by replicating the force-extension curve of a DNA molecule.
机译:光学陷阱使用光的辐射压力来操纵微观物体。光与微观物体之间的相互作用导致物体承受光学力。这些力与生物力处于相同的数量级(通常 SIrange [range-units = single] {0.1} {100} { pico newton}),并且此功能使光阱适合于单分子研究。当前,越来越需要创建一种自动光阱,该光阱使用光阱的整个工作范围来研究生物力。光力的空间非线性和参数不确定性使光阱的反馈控制变得复杂。结果是用户花费了大量时间来校准仪器和设计控制器,这使他们的时间从研究生物物理学上转移了。这项研究探索了使用非线性和自适应反馈方法来创建自动光阱的问题。 ud ud定义了一个模型来描述光阱和分子动力学之间的耦合,并且将分子内的标称力视为干扰。通过创建干扰模型并将其动力学与系统动力学相结合,可以获得干扰信息。通过使用非线性卡尔曼滤波器估计系统状态来解决系统非线性问题,然后将系统状态用于输入输出反馈线性化和线性二次结构,以满足性能要求。进行统计分析以评估反馈方法对开环和闭环系统的有效性。当在控制设计中考虑系统非线性时,将其性能与实际中用于量化性能改进的线性积分控制的性能进行比较。通过使用自适应和非线性反馈方法来解决系统的非线性和参数不确定性。自适应状态观察器提供系统状态和参数的同时估计,然后将这些估计的实体用于自适应输入输出反馈线性化和LQ结构中。结果是创建了一个自动自调谐光阱,该阱可以使用户与仪器校准和控制设计的交互作用最小化,可以使用光阱的整个工作范围,并获得分子力的无偏估计。这些反馈方法的闭环性能通过复制DNA分子的力-延伸曲线来证明。

著录项

  • 作者

    Pickel Jason;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号