首页> 外文OA文献 >Distributed Spectral Graph Methods for Analyzing Large-Scale Unstructured Biomedical Data
【2h】

Distributed Spectral Graph Methods for Analyzing Large-Scale Unstructured Biomedical Data

机译:分布式光谱图方法分析大规模非结构化生物医学数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is an ever-expanding body of biological data, growing in size and complexity, out- stripping the capabilities of standard database tools or traditional analysis techniques. Such examples include molecular dynamics simulations, drug-target interactions, gene regulatory networks, and high-throughput imaging. Large-scale acquisition and curation biological data has already yielded results in the form of lower costs for genome sequencing and greater cov- erage in databases such as GenBank, and is viewed as the future of biocuration. The “big data” philosophy and its associated paradigms and frameworks have the potential to uncover solutions to problems otherwise intractable with more traditional investigative techniques.udHere, we focus on two biological systems whose data form large, undirected graphs. First, we develop a quantitative model of ciliary motion phenotypes, using spectral graph methods for unsupervised latent pattern discovery. Second, we apply similar techniques to identify a mapping between physiochemical structure and odor percept in human olfaction. In both cases, we experienced computational bottlenecks in our statistical machinery, necessitating the creation of a new analysis framework. At the core of this framework is a distributed hierarchical eigensolver, which we compare directly to other popular solvers. We demon- strate its essential role in enabling the discovery of novel ciliary motion phenotypes and in identifying physiochemical-perceptual associations.
机译:生物数据的规模不断扩大,其规模和复杂性不断增长,超过了标准数据库工具或传统分析技术的能力。这样的例子包括分子动力学模拟,药物-靶标相互作用,基因调控网络和高通量成像。大规模的采集和管理生物数据已经以较低的基因组测序成本和更大的数据库覆盖范围(如GenBank)获得了成果,被视为生物固化的未来。 “大数据”哲学及其相关的范式和框架有可能发现解决方案,而这些问题是其他传统调查技术难以解决的。 ud此处,我们关注的是两个生物学系统,其数据构成了大型无向图。首先,我们使用光谱图方法开发了睫状运动表型的定量模型,用于无监督的潜在模式发现。其次,我们应用类似的技术来识别人类嗅觉中理化结构与气味感知之间的映射。在这两种情况下,我们在统计机制中都遇到了计算瓶颈,因此有必要创建一个新的分析框架。该框架的核心是分布式分层特征求解器,我们可以将其直接与其他流行的求解器进行比较。我们证明了其在发现新型睫状运动表型和识别理化-知觉关联中的重要作用。

著录项

  • 作者

    Quinn Shannon;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号