首页> 外文OA文献 >Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks
【2h】

Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks

机译:疾病基因之间的进化特征为基因优先排序和基于信息基因网络的构建提供了新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.
机译:参与相同功能的基因往往具有相似的进化历史,因为它们的进化速率随时间变化。仅使用来自一组紧密相关物种的基因序列来计算这种被称为进化速率协变(ERC)的共进化特征,并且已经证明了其作为推断基因之间功能关系的计算工具的潜力。为了进一步定义ERC的应用,我们首先确定大约55%的遗传疾病在其贡献基因之间具有ERC签名。以5%的错误发现率,我们报告了40种此类疾病,包括癌症,发育障碍和线粒体疾病。考虑到这些疾病基因之间的这些共同进化特征,我们然后评估了ERC从一系列不相关候选基因中区分已知疾病基因的优先级的能力。我们发现,在存在ERC签名的情况下,真正的疾病基因实际上平均要比候选者的前6%高。然后,我们将此策略应用于1号染色体上的黑色素瘤相关区域,并将MCL1识别为潜在的致病基因。此外,为了获得对疾病机制的全球了解,我们使用ERC来预测310种名义上不同的疾病之间的分子联系。由此产生的“疾病图谱”网络将几种疾病与相关的致病机制相关联,并揭示了临床上不同的疾病之间的许多新颖关系,例如在赫希斯蓬氏病和黑色素瘤之间。综上所述,这些结果证明了分子进化作为基因发现平台的实用性,并表明进化特征可用于构建基于信息的基因网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号