首页> 外文OA文献 >Variation-Tolerant Non-Uniform 3D Cache Management in Memory Stacked Multi-Core Processors
【2h】

Variation-Tolerant Non-Uniform 3D Cache Management in Memory Stacked Multi-Core Processors

机译:内存堆叠多核处理器中的差异容忍非均匀3D缓存管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Process variations in integrated circuits have significant impact on their performance, leakage and stability. This is particularly evident in large, regular and dense structures such as DRAMs. DRAMs are built using minimized transistors with presumably uniform speed in an organized array structure. Process variation can introduce latency disparity among different memory arrays. With the proliferation of 3D stacking technology, DRAMs become a favorable choice for stacking on top of a multi-core processor as a last level cache for large capacity, high bandwidth, and low power. Hence, variations in bank speed create a unique problem of non-uniform cache accesses in the 3D space.In this thesis, we investigate cache management techniques for tolerating process variation in a 3D DRAM stacked onto a multi-core processor. We modeled the process variation in a 4-layer DRAM memory to characterize the latency variations among different banks. As a result, the notion of fast and slow banks from the core's standpoint is no longer associated with their physical distances with the banks. They are determined by the different bank latencies due to process variation. We develop cache migration schemes that utilize fast banks while limiting the cost due to migration. Our experiments show that there is a great performance benefit in exploiting fast memory banks through migration. On average, a variation-aware management can improve the performance of a workload over the baseline (where the speed of the slowest bank is assumed for all banks) by 17.8%. We are also only 0.45% away in performance from an ideal memory where no PV is present.
机译:集成电路中的工艺变化会对它们的性能,泄漏和稳定性产生重大影响。这在大型,规则且密集的结构(例如DRAM)中尤其明显。 DRAM是使用最小化的晶体管以有组织的阵列结构中的均匀速度构建的。进程变化可能会导致不同内存阵列之间的延迟差异。随着3D堆栈技术的发展,DRAM成为在多核处理器上进行堆栈的理想选择,作为用于大容量,高带宽和低功耗的最后一级缓存。因此,存储体速度的变化会造成3D空间中非均匀缓存访问的独特问题。在本文中,我们研究了可容忍堆叠到多核处理器上的3D DRAM中的处理变化的缓存管理技术。我们在4层DRAM存储器中对过程变化建模,以表征不同存储体之间的延迟变化。结果,从核心的角度来看,快和慢存储体的概念不再与它们与存储体的物理距离相关联。它们由过程变化所导致的不同存储库等待时间决定。我们开发了利用快速存储库的缓存迁移方案,同时限制了由于迁移而产生的成本。我们的实验表明,通过迁移利用快速存储库具有巨大的性能优势。平均而言,变化感知管理可以使工作负载的性能在基线(假定所有存储库均以最慢存储库的速度为基准)的基础上提高17.8%。与没有PV的理想内存相比,我们的性能也只有0.45%的差距。

著录项

  • 作者

    Zhao Bo;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号