首页> 外文期刊>Journal of Low Power Electronics >Cyber-Physical Thermal Management of 3D Multi-Core Cache-Processor System with Microfluidic Cooling
【24h】

Cyber-Physical Thermal Management of 3D Multi-Core Cache-Processor System with Microfluidic Cooling

机译:具有微流体冷却的3D多核高速缓存处理器系统的网络物理热管理

获取原文
获取原文并翻译 | 示例
           

摘要

Existing three-dimensional (3D) integration of multi-core processor-cache system is confronted with the problem of die thermal run-away hazard. This teething problem is addressed by a real-time demand-based thermal management with non-uniform microfluidic cooling in this paper. A novel runtime temperature management is implemented to predict the real-time temperature demand based on software-sensing with prediction-and-correction. A 3D thermal model is developed to cater the real-time microfluidic thermal dynamics. An autoregressive (AR) prediction with correction is implemented by Kalman filtering to predict and correct the runtime power, which is further used to calculate the future temperature demand. With this software-sensing approach, thermal management can be performed in a cyber-physical fashion with real-time sensing, prediction-and-correction and fine-grained control. Compared to the existing works using on-chip temperature sensors, our closed-loop controller with software-sensing avoids the cost of sensor implementation and deployment. Our work analyzes and predicts the fine-grained temperature profile of multi-core processor-cache system. It enables a number of microfluidic channels to be adjusted adaptively with different flow-rates to control the system temperature proactively as opposed to the static control with a uniform flow-rate for microfluidic channels. With the proposed cyber-physical temperature management scheme, it is shown that the temperature of multi-core system is suppressed below an acceptable thermal threshold. In fact, the fine-grained flow-rate control also achieves a more even temperature distribution and saves up to 72.1% of total flow-rate compared with uniform flow-rate controls.
机译:现有的多核处理器-缓存系统的三维(3D)集成面临着芯片热失控危害的问题。本文通过实时的基于需求的热管理以及非均匀的微流体冷却解决了这一问题。实现了一种新颖的运行时温度管理,以基于带有预测和校正的软件感应来预测实时温度需求。开发了3D热模型来满足实时微流体热动力学。通过卡尔曼滤波实现带校正的自回归(AR)预测,以预测和校正运行时间功率,该功率还可以用于计算未来的温度需求。借助这种软件感应方法,可以通过具有实时感应,预测和校正以及细粒度控制的网络物理方式来执行热管理。与使用片上温度传感器的现有工作相比,我们的带软件感应的闭环控制器避免了传感器实施和部署的成本。我们的工作分析并预测了多核处理器缓存系统的细粒度温度曲线。与静态控制不同流量的静态控制相比,它能够以不同的流量自适应地调整多个微流体通道,以主动控制系统温度。通过提出的网络物理温度管理方案,可以证明多核系统的温度被抑制在可接受的热阈值以下。实际上,与均匀的流量控制相比,细粒度的流量控制还可以实现更均匀的温度分布,并节省高达72.1%的总流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号