首页> 外文OA文献 >LOCATING AND REDUCING TRANSLATIONDIFFICULTY
【2h】

LOCATING AND REDUCING TRANSLATIONDIFFICULTY

机译:定位和减少翻译困难

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The challenge of translation varies from one sentence to another, or even between phrases of a sentence. We investigate whether variations in difficulty can be located automatically for Statistical Machine Translation (SMT). Furthermore, we hypothesize that customization of a SMT system based on difficulty information, improves the translation quality.We assume a binary categorization for phrases: easy vs. difficult. Our focus is on the Difficult to Translate Phrases (DTPs). Our experiments show that for a sentence, improving the translation of the DTP improves the translation of the surrounding non-difficult phrases too. To locate the most difficult phrase of each sentence, we use machine learning and construct a difficulty classifier. To improve the translation of DTPs, we introduce customization methods for three components of the SMT system: I. language model; II. translation model; III. decoding weights. With each method, we construct a new component that is dedicated for the translation of difficult phrases. Our experiments on Arabic-to-English translation show that DTP-specific system customization is mostly successful.Overall, we demonstrate that translation difficulty is an important source of information for machine translation and can be used to enhance its performance.
机译:翻译的挑战从一个句子到另一个句子,甚至一个句子的短语之间都不同。我们调查是否可以自动确定统计机器翻译(SMT)的难度变化。此外,我们假设基于难度信息的SMT系统的定制可以提高翻译质量。我们假设对短语进行二进制分类:简单vs.困难。我们的重点是难于翻译短语(DTP)。我们的实验表明,对于一个句子,改进DTP的翻译也可以改善周围的非难懂短语的翻译。为了找到每个句子中最困难的短语,我们使用机器学习并构造了一个难度分类器。为了改进DTP的翻译,我们为SMT系统的三个组件引入了自定义方法:I.语言模型;二。翻译模型;三,解码权重。使用每种方法,我们都会构建一个新组件,专门用于翻译困难的短语。我们的阿拉伯语到英语翻译实验表明,DTP特定的系统定制大部分都是成功的。总体而言,我们证明翻译困难是机器翻译的重要信息来源,可用于提高其性能。

著录项

  • 作者

    Mohit Behrang;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号