首页> 外文OA文献 >DIMENSIONALITY REDUCTION INCONTROL AND COORDINATION OF HUMAN HAND
【2h】

DIMENSIONALITY REDUCTION INCONTROL AND COORDINATION OF HUMAN HAND

机译:人手控制与协调中的维降

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human hand is an excellent example of versatile architecture which can easily accomplish numerous tasks with very least effort possible. Researchers have been trying to analyze the complex architecture of the human hand. It is an unsolved mystery even today how Central Nervous System (CNS) controls the high degree of freedom (DoF) of the human hand. Investigators have put forth numerous theories which support movement planning both at higher and lower levels of the neural system as well as the bio mechanical system. This planning is hypothesized to happen in a reduced dimensionality space of tiny modules of movement called movement primitives often referred to as synergies. These synergies are physiologically significant in planning and control of movement.This dissertation presents time-varying kinematic synergies which linearly combine to generate the entire movement. The decomposition of these synergies becomes an exciting optimization problem and even more fascinating as it addresses two most important problems of motor control—coordination and dimensionality reduction. In this dissertation, a new model of convolutive mixtures for generation of joint movements is proposed. According to this model, an impulse originated in the higher-level neural system evokes the activation of some circuits in the lower-level neural system, then stimulates certain biomechanical structures, and eventually creates a stereotyped angular change at each finger-joint of the hand. Current model enabled greater access to existing blind source separation algorithms which reduce the computational complexity. First, kinematic synergies were extracted from a well known matrix factorization method, namely principal component analysis. By using the above kinematic synergies, a method to obtain temporal postural synergies is established. These temporal postural synergies were further used in the model of convolutive mixtures. An optimal selection of these temporal synergies which can reconstruct movements is then achieved by l1-minimization. The realization of the model by l1-minimization out performed the previous models which use steepest descent gradient methods. Synergies have received increased attention in the fields of robotics, human computer interface, telesurgery and rehabilitation. Improved performance and new computational model to decompose synergies presented here might enable them to be appropriate for real time applications.
机译:人的手是通用体系结构的一个很好的例子,它可以以最小的努力轻松地完成许多任务。研究人员一直在尝试分析人手的复杂结构。直到今天,中枢神经系统(CNS)如何控制人手的高度自由度(DoF)仍是一个未解之谜。研究人员提出了许多理论,这些理论支持神经系统以及生物力学系统的较高和较低级别的运动计划。假设此计划发生在称为运动原语的运动的微小模块的降维空间中,该运动原件通常称为协同作用。这些协同作用在运动的计划和控制中具有重要的生理意义。本论文提出了随时间变化的运动协同作用,这些协同作用线性地组合起来产生整个运动。这些协同作用的分解成为一个令人兴奋的优化问题,并且因为它解决了电机控制的两个最重要的问题(协调和降维),因此更加引人入胜。本文提出了一种用于产生关节运动的卷积混合物的新模型。根据该模型,源自上层神经系统的冲动会引起下层神经系统中某些电路的激活,然后刺激某些生物力学结构,并最终在手的每个手指关节处产生定型的角度变化。当前模型使人们能够更好地利用现有的盲源分离算法,从而降低了计算复杂性。首先,从众所周知的矩阵分解方法中提取运动学协同作用,即主成分分析。通过使用以上运动学协同作用,建立了获得时间姿势协同作用的方法。这些时间姿势协同作用进一步用于回旋混合物模型中。然后可以通过l1最小化来实现这些可以重建运动的时间协同作用的最佳选择。通过l1最小化实现的模型执行了之前使用最速下降梯度方法的模型。在机器人技术,人机界面,远程外科和康复领域,协同作用已受到越来越多的关注。改进的性能和新的计算模型可分解此处介绍的协同作用,可能使它们适用于实时应用。

著录项

  • 作者

    Vinjamuri Ramana Kumar;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号