首页> 外文OA文献 >A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.
【2h】

A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.

机译:混合步行神经假体的肌肉协同灵感自适应控制方案。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and functional electrical stimulation (FES) has a promising potential to restore walking in persons with paraplegia. A hybrid actuation structure introduces effector redundancy, making its automatic control a challenging task because multiple muscles and additional electric motor need to be coordinated. Inspired by the muscle synergy principle, we designed a low dimensional controller to control multiple effectors: FES of multiple muscles and electric motors. The resulting control system may be less complex and easier to control. To obtain the muscle synergy-inspired low dimensional control, a subject-specific gait model was optimized to compute optimal control signals for the multiple effectors. The optimal control signals were then dimensionally reduced by using principal component analysis to extract synergies. Then, an adaptive feedforward controller with an update law for the synergy activation was designed. In addition, feedback control was used to provide stability and robustness to the control design. The adaptive-feedforward and feedback control structure makes the low dimensional controller more robust to disturbances and variations in the model parameters and may help to compensate for other time-varying phenomena (e.g., muscle fatigue). This is proven by using a Lyapunov stability analysis, which yielded semi-global uniformly ultimately bounded tracking. Computer simulations were performed to test the new controller on a 4-degree of freedom gait model.
机译:使用基于电动机的可穿戴外骨骼和功能性电刺激(FES)的混合神经假体具有恢复截瘫患者行走的潜力。混合驱动结构引入了效应器冗余,使其自动控制成为一项艰巨的任务,因为需要协调多条肌肉和额外的电动机。受肌肉协同原理的启发,我们设计了一个低维控制器来控制多个效应器:多个肌肉和电动机的FES。所得的控制系统可能不太复杂并且更易于控制。为了获得受肌肉协同作用启发的低维度控制,对特定对象的步态模型进行了优化,以计算多个效应器的最佳控制信号。然后,通过使用主成分分析来提取协同效应,从而减小最佳控制信号的尺寸。然后,设计了具有更新律的协同前馈自适应自适应控制器。另外,反馈控制用于为控制设计提供稳定性和鲁棒性。自适应前馈和反馈控制结构使低维控制器对模型参数的扰动和变化更加鲁棒,并可能有助于补偿其他随时间变化的现象(例如,肌肉疲劳)。这通过使用Lyapunov稳定性分析得到了证明,该分析产生了半全局一致的最终有界跟踪。进行了计算机仿真,以在4自由度步态模型上测试新控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号