首页> 外文OA文献 >Curvelet-Based Texture Classification in Computerized Critical Gleason Grading of Prostate Cancer Histological Images
【2h】

Curvelet-Based Texture Classification in Computerized Critical Gleason Grading of Prostate Cancer Histological Images

机译:前列腺癌组织学图像计算机关键Gleason分级中基于Curvelet的纹理分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classical multi-resolution image processing using wavelets provides an efficient analysis of image characteristics represented in terms of pixel-based singularities such as connected edge pixels of objects and texture elements given by the pixel intensity statistics. Curvelet transform is a recently developed approach based on curved singularities that provides a more sparse representation for a variety of directional multi-resolution image processing tasks such as denoising and texture analysis. The objective of this research is to develop a multi-class classifier for the automated classification of Gleason patterns of prostate cancer histological images with the utilization of curvelet-based texture analysis. This problem of computer-aided recognition of four pattern classes between Gleason Score 6 (primary Gleason grade 3 plus secondary Gleason grade 3) and Gleason Score 8 (both primary and secondary grades 4) is of critical importance affecting treatment decision and patients’ quality of life. Multiple spatial sampling within each histological image is examined through the curvelet transform, the significant curvelet coefficient at each location of an image patch is obtained by maximization with respect to all curvelet orientations at a given location which represents the apparent curved-based singularity such as a short edge segment in the image structure. This sparser representation reduces greatly the redundancy in the original set of curvelet coefficients. The statistical textural features are extracted from these curvelet coefficients at multiple scales. We have designed a 2-level 4-class classification scheme, attempting to mimic the human expert’s decision process. It consists of two Gaussian kernel support vector machines, one support vector machine in each level and each is incorporated with a voting mechanism from classifications of multiple windowed patches in an image to reach the final decision for the image. At level 1, the support vector machine with voting is trained to ascertain the classification of Gleason grade 3 and grade 4, thus Gleason score 6 and score 8, by unanimous votes to one of the two classes, while the mixture voting inside the margin between decision boundaries will be assigned to the third class for consideration at level 2. The support vector machine in level 2 with supplemental features is trained to classify an image patch to Gleason grade 3+4 or 4+3 and the majority decision from multiple patches to consolidate the two-class discrimination of the image within Gleason score 7, or else, assign to an Indecision category. The developed tree classifier with voting from sampled image patches is distinct from the traditional voting by multiple machines. With a database of TMA prostate histological images from Urology/Pathology Laboratory of the Johns Hopkins Medical Center, the classifier using curvelet-based statistical texture features for recognition of 4-class critical Gleason scores was successfully trained and tested achieving a remarkable performance with 97.91% overall 4-class validation accuracy and 95.83% testing accuracy. This lends to an expectation of more testing and further improvement toward a plausible practical implementation.
机译:使用小波的经典多分辨率图像处理可有效地分析以像素为基础的奇点表示的图像特性,例如对象的连接边缘像素和由像素强度统计信息给出的纹理元素。 Curvelet变换是基于弯曲奇点的最新开发方法,可为各种方向性多分辨率图像处理任务(例如降噪和纹理分析)提供更稀疏的表示。这项研究的目的是开发一种多分类器,以利用基于Curvelet的纹理分析对前列腺癌组织学图像的Gleason模式进行自动分类。计算机辅助识别Gleason评分6(初等Gleason 3级加中学Gleason 3级)和Gleason评分8(初等和中学4级)之间的四个模式类别的问题对于影响治疗决策和患者的质量至关重要。生活。通过curvelet变换检查每个组织学图像中的多个空间采样,通过最大化给定位置上所有curvelet方向(表示基于曲线的奇异点,例如a)的所有curvelet方向,来获得图像斑块每个位置处的重要curvelet系数。图像结构中的短边缘段。这种稀疏表示大大减少了原始的Curvelet系数集中的冗余。从这些curvelet系数以多个比例提取统计纹理特征。我们设计了2级4级分类方案,试图模仿人类专家的决策过程。它由两台高斯内核支持向量机组成,每级一个支持向量机,并且每台机器都结合了一种投票机制,该投票机制来自图像中多个窗口补丁的分类,以最终决定图像。在级别1上,经过培训的具有投票功能的支持向量机可以通过对两个类别之一的一致投票来确定格里森3级和4级的分类,从而确定格里森6级和8分的等级,而混合投票则介于两者之间决策边界将分配给第三级,以便在级别2进行考虑。级别2具有辅助功能的支持向量机经过训练,可以将图像补丁分类为格里森3 + 4或4 + 3级,将多数决策从多个补丁分类为将图像的两类辨别合并到Gleason评分7内,否则分配给犹豫不决类别。具有从采样图像补丁中投票的已开发树分类器与传统的多台机器投票不同。借助约翰霍普金斯大学医学中心泌尿外科/病理学实验室的TMA前列腺组织学图像数据库,使用基于Curvelet的统计纹理特征识别4级临界Gleason得分的分类器已成功训练和测试,取得了显着的成绩,达到97.91%总的4级验证准确性和95.83%的测试准确性。这期望可以进行更多测试,并进一步改善可行的实际实施方式。

著录项

  • 作者

    Lin Wen-Chyi;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号