首页> 外文OA文献 >Discretizations and Solvers for Coupling Stokes-Darcy Flows With Transport
【2h】

Discretizations and Solvers for Coupling Stokes-Darcy Flows With Transport

机译:斯托克斯-达西流与运输耦合的离散化和求解器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis studies a mathematical model, in which Stokes-Darcy flow system is coupled with a transport equation. The objective is to develop stable and convergent numerical schemes that could be used in environmental applications. Special attention is given to discretization methods that conserve mass locally. First, we present a global saddle point problem approach, which employs the discontinuous Galerkin method to discretize the Stokes equations and the mimetic finite difference method to discretize the Darcy equation. We show how the numerical scheme can be formulated on general polygonal (polyhedral in three dimensions) meshes if suitable operators mapping from degrees of freedom to functional spaces are constructed. The scheme is analyzed and error estimates are derived. A hybridization technique is used to solve the system effectively. We ran several numerical experiments to verify the theoretical convergence rates and depending on the mesh type we observed superconvergence of the computed solution in the Darcy region.Another approach that we use to deal with the flow equations is based on non-overlapping domain decomposition. Domain decomposition enables us to solve the coupled Stokes-Darcy flow problem in parallel by partitioning the computational domain into subdomains, upon which families of coupled local problems of lower complexity are formulated. The coupling of the subdomain problems is removed through an iterative procedure. We investigate the properties of this method and derive estimates for the condition number of the associated algebraic system. Results from computer tests supporting the convergence analysis of the method are provided. To discretize the transport equation we use the local discontinuous Galerkin (LDG) method, which can be thought as a discontinuous mixed finite element method, since it approximates both the concentration and the diffusive flux. We develop stability and convergence analysis for the concentration and the diffusive flux in the transport equation. The numerical error is a combination of the LDG discretization error and the error from the discretization of the Stokes-Darcy velocity. Several examples verifying the theory and illustrating the capabilities of the method are presented.
机译:本文研究了一个数学模型,其中斯托克斯-达西流系统与输运方程耦合。目的是开发可用于环境应用的稳定和收敛的数值方案。特别注意离散化方法,该方法可以局部保存质量。首先,我们提出一种全局鞍点问题方法,该方法采用不连续Galerkin方法离散化Stokes方程,并采用模拟有限差分法离散化Darcy方程。我们展示了如果构造了从自由度到功能空间的映射的合适算子,那么如何在普通的多边形(三维多面体)网格上制定数值方案。分析该方案并得出误差估计。混合技术用于有效地解决系统问题。我们进行了一些数值实验以验证理论收敛速度,并根据网格类型观察到了Darcy区域中计算解的超收敛性。我们用于处理流动方程的另一种方法是基于非重叠域分解。领域分解使我们能够通过将计算领域划分为子领域来并行解决耦合的Stokes-Darcy流问题,在此领域上制定了复杂性较低的耦合局部问题的族。子域问题的耦合通过迭代过程消除。我们研究此方法的性质,并推导相关代数系统的条件数的估计。提供了支持该方法收敛性分析的计算机测试结果。为了离散化输运方程,我们使用局部不连续伽勒金(LDG)方法,可以将其视为不连续混合有限元方法,因为它既可以近似计算浓度,也可以近似计算扩散通量。我们对输运方程中的浓度和扩散通量进行稳定性和收敛性分析。数值误差是LDG离散误差和Stokes-Darcy速度离散产生的误差的组合。给出了几个验证理论并说明该方法功能的示例。

著录项

  • 作者

    Vassilev Danail Hristov;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号