首页> 外文OA文献 >Computational Approaches to Efficiently Maximize Solution Capabilities and Quantify Uncertainty for Inverse Problems in Mechanics
【2h】

Computational Approaches to Efficiently Maximize Solution Capabilities and Quantify Uncertainty for Inverse Problems in Mechanics

机译:有效地提高求解能力并量化力学反问题不确定性的计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational approaches to solve inverse problems can provide generalized frameworks for treating and distinguishing between the various contributions to a system response, while providing physically meaningful solutions that can be applied to predict future behaviors. However, there are several common challenges when using any computational inverse mechanics technique for applications such as material characterization. These challenges are typically connected to the inherent ill-posedness of the inverse problems, which can lead to a nonexistent solution, non-unique solutions, and/or prohibitive computational expense.ududToward reducing the effects of inverse problem ill-posedness and improving the capability to accurately and efficiently estimate inverse problem solutions, a suite of computational tools was developed and evaluated. First, an approach to NDT design to maximize the capabilities to use computational inverse solution techniques for material characterization and damage identification in structural components, and more generally in solid continua, is presented. The approach combines a novel set of objective functions to maximize test sensitivity and simultaneously minimize test information redundancy to determine optimal NDT parameters. The NDT design approach is shown to provide measurement data that leads to consistent and significant improvement in the ability to accurately inversely characterize variations in the Young's modulus distributions for simulated test cases in comparison to alternate NDT designs. Next, an extension of the NDT design approach is presented, which includes a technique to address potential system uncertainty and add robustness to the resulting NDT design, again in the context of material characterization. The robust NDT design approach uses collocation techniques to approximate the modified objective functionals that not only maximize the test sensitivity and minimize the test information redundancy, but now also maximize the test robustness to system uncertainty. The capability of this probabilistic NDT design method to provide consistent improvement in the ability to accurately inversely characterize variations in the Young's modulus distributions for cases where systems have uncertain parameters, such as uncertain boundary condition features, is again shown with numerically simulated examples. Lastly, an approach is presented to more directly address the computational expense of solving an inverse problem, particularly for those problems with significant system uncertainties. The sparse grid method is used as the foundation of this solution approach to create a computationally efficient polynomial approximation (i.e., surrogate model) of the system response with respect to both deterministic and uncertain parameters to be used in the inverse problem solution process. More importantly, a novel generally applicable algorithm is integrated for adaptive generation of a data ensemble, which is then used to create a reduced-order model (ROM) to estimate the desired system response. In particular, the approach builds the ROM to accurately estimate the system response within the expected range of the deterministic and uncertain parameters, to then be used in place of the traditional full order modeling (i.e., standard finite element analysis) in constructing the surrogate model for the inverse solution procedure. This computationally efficient approach is shown through simulated examples involving both solid mechanics and heat transfer to provide accurate solution estimates to inverse problems for systems represented by stochastic partial differential equations with a fraction of the typical computational cost.
机译:解决逆问题的计算方法可以提供用于处理和区分对系统响应的各种影响的通用框架,同时提供可以用于预测未来行为的具有物理意义的解决方案。但是,在将任何计算逆力学技术用于诸如材料表征之类的应用时,存在几个共同的挑战。这些挑战通常与反问题的固有不适性相关,这可能会导致不存在解,非唯一解和/或计算费用过高。 ud ud减少反问题不适性的影响和为了提高准确,高效地估计逆问题解决方案的能力,开发并评估了一套计算工具。首先,提出了一种无损检测设计方法,该方法可以最大程度地利用计算逆解技术来进行结构部件(尤其是实体连续体)中的材料表征和损伤识别。该方法结合了一组新颖的目标函数,以最大化测试灵敏度,同时最小化测试信息冗余以确定最佳NDT参数。与替代的NDT设计相比,NDT设计方法显示出可提供测量数据,从而可以准确,逆向地表征模拟测试用例的杨氏模量分布变化,从而获得了持续且显着的提高。接下来,提出了无损检测设计方法的扩展,其中包括一种解决潜在系统不确定性的技术,并再次在材料表征的背景下为所得的无损检测设计增加了鲁棒性。稳健的NDT设计方法使用搭配技术来逼近修改后的目标功能,这些功能不仅可以最大程度地提高测试灵敏度并最小化测试信息冗余,而且现在还可以最大程度地提高针对系统不确定性的测试稳健性。在系统具有不确定参数(例如不确定边界条件特征)的情况下,这种概率NDT设计方法的能力不断提高,可以准确地逆向表征杨氏模量分布的变化,并通过数值模拟的示例进行了展示。最后,提出了一种方法来更直接地解决解决反问题的计算费用,特别是对于那些具有很大系统不确定性的问题。稀疏网格法被用作该解决方案方法的基础,以针对要在逆问题解决过程中使用的确定性参数和不确定性参数创建系统响应的计算有效的多项式逼近(即代理模型)。更重要的是,集成了一种新颖的通用算法,用于自适应生成数据集合,然后将其用于创建降阶模型(ROM)以估计所需的系统响应。特别地,该方法构建了ROM,以在估计的确定性和不确定性参数的预期范围内准确估计系统响应,然后在构建替代模型时代替传统的全阶建模(即标准有限元分析)使用反解程序。通过涉及固体力学和热传递的模拟示例显示了这种计算有效的方法,可以为由随机偏微分方程表示的系统的逆问题提供准确的解决方案估计,而计算成本却只是其中的一小部分。

著录项

  • 作者

    Notghi Bahram;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号