首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >GMRES with embedded ensemble propagation for the efficient solution of parametric linear systems in uncertainty quantification of computational models
【24h】

GMRES with embedded ensemble propagation for the efficient solution of parametric linear systems in uncertainty quantification of computational models

机译:具有嵌入式集合传播的GMRES,用于高效解决参数线性系统的计算模型的不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

In a previous work, embedded ensemble propagation was proposed to improve the efficiency of sampling-based uncertainty quantification methods of computational models on emerging computational architectures. It consists of simultaneously evaluating the model for a subset of samples together, instead of evaluating them individually. A first approach introduced to solve parametric linear systems with ensemble propagation is ensemble reduction. In Krylov methods for example, this reduction consists in coupling the samples together using an inner product that sums the sample contributions. Ensemble reduction has the advantages of being able to use optimized implementations of BLAS functions and having a stopping criterion which involves only one scalar. However, the reduction potentially decreases the rate of convergence due to the gathering of the spectra of the samples. In this paper, we investigate a second approach: ensemble propagation without ensemble reduction in the case of GMRES. This second approach solves each sample simultaneously but independently to improve the convergence compared to ensemble reduction. This raises two new issues which are solved in this paper: the fact that optimized implementations of BLAS functions cannot be used anymore and that ensemble divergence, whereby individual samples within an ensemble must follow different code execution paths, can occur. We tackle those issues by implementing a high-performing ensemble GEMV and by using masks. The proposed ensemble GEMV leads to a similar cost per GMRES iteration for both approaches, i.e. with and without reduction. For illustration, we study the performances of the new linear solver in the context of a mesh tying problem. This example demonstra (C) 2020 Elsevier B.V. All rights reserved.
机译:在以前的工作中,提出了嵌入式集合传播,以提高新出现的计算架构上的计算模型的基于采样的不确定性量化方法的效率。它包括同时评估样本子集的模型,而不是单独评估它们。引入以求解聚组传播的参数线性系统引入的第一方法是整合减少。例如,在krylov方法中,这种减少包括使用总和样品贡献的内部产品将样品耦合在一起。 Ensemble Dreake具有能够使用Blas功能的优化实现并具有停止标准的优点,该标准仅涉及一个标量。然而,由于样品光谱的聚集,减少可能降低收敛速率。在本文中,我们调查了第二种方法:在GMRES的情况下没有整合的组合传播而无需减少。第二方法同时解决每个样本,但独立地求出,以改善与集合减少相比的收敛。这提高了本文解决了两个新的问题:不能再使用诸如诸如BLAS功能的优化实现而且集合发散,因此必须遵循不同的代码执行路径。我们通过实施高性能的合奏GEMV来解决这些问题,并通过使用掩码。该拟议的合奏Gemv导致两种方法的GMRES迭代的类似成本,即,有和没有减少。为了插图,我们在网格绑定问题的背景下研究新的线性求解器的性能。此示例演示(c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号