首页> 外文OA文献 >Modeling and numerical simulation of solid rocket motors internal ballistics
【2h】

Modeling and numerical simulation of solid rocket motors internal ballistics

机译:固体火箭发动机内部弹道建模与数值模拟

摘要

In the design and development of solid propellant rocket motors, the use of numerical tools able to simulate, predict and reconstruct the behavior of a given motor in all its operative conditions is particularly important in order to decrease all the planning times and costs.udThis work is devoted to present an approach to the numerical simulation of SRM internal ballistic during the entire combustion time (ignition transient, quasi steady state and tail-off) by means of a Q1D unsteady numerical simulation model, named SPINBALL (Solid Propellant rocket motor INternal BALListic).udSPINBALL comes out from the updating and further development of the numerical, mathematical and physical models of the SPIT model (Solid Propellant rocket motor Ignition Transient), that allows to extend the numerical simulation of the SRM internal ballistic, from the ignition transient, to quasi steady state and tail-off.udSPINBALL core model is a quasi-1D unsteady gasdynamics model of the internal ballistic, with source terms that take into account the contribution to the bore flowfield conditions due to the igniter, the grain propellant and thermal protections.udThe flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermophysical properties (standard thermodynamics approach). The governing equations are discretized by a Godunov-type scheme, first or second order in space and time. The use of a such approach allows to consider the addition into the chamber due to both ablation phenomena from thermal protections and combustion reactions from the grain propellant, but even to take into account the equilibrium point of the grain propellant exothermic reactions, as function of the local pressure and the variation from that nominal condition, through the combustion efficiency.udThis main model is completed by several sub-models, in order to describe all the driving phenomena that lead the internal ballistic for the entire combustion time: an igniter model, an heat transfer model for convection and radiation, propellant ignition criterion, a cavity model to account submergence and slot regions, a grain combustion model with the pressure term (APN model) and the erosive term (Lenoir-Robillard model with the modifications due to Lawrence and Beddini). Some of them coming from the SPIT model.udFocusing on the driving phenomena that characterize the internal ballistic over the ignition transient, it is known that, during quasi steady state and tail-off, the motor bore flowfield conditions are led mainly by the grain burning surface evolution in time and the possible nozzle throat area ablation phenomena.udThe grain burning surface evolution model is a 3D numerical grain regression model (named GREG) based on a full matrix level set approach, on both rectangular and cylindrical structured grids, that gives to the gasdynamical model the evolution in time of port area, wet perimeter and burn perimeter along the motor axis and in the submergence zone.udThe numerical scheme for the numerical integration of the Level Set equation is built from the strong link between Hamilton-Jacobi equations and conservation laws and it is a first or second order (minmod flux limiter and Heun's method) in time and space time marching scheme based of an exact Riemann solver.udThe use of a 3D model is mandatory to carry out the grain burnback analysis in the case of general and complex 3D grain shapes, as finocyl grains, whatever bore flowfield dimensional model (0D or Q1D) is adopted.udGREG module can handle 3D complex geometries directly from CAD tools, building up its initial condition as a narrow signed distance function from STL (stereolithography) files of the grain propellant and the thermal protections and insulation shapes by a completely automatic procedure.udThe grain burning rate can be variable, both in space and time.udThe use of grain propellant shape symmetries is exploited with the setting up of mirroring, or periodic boundary conditions, reducing the computational costs.udThe evaluation of the grain geometrical parameter, as areas, volumes and perimeters, is made with a robust second order regularization of the Dirac Delta and Heaviside functions to avoid the typical problems related with the use of the standard regularization techniques. udWhile potentially GREG module can be completely coupled with the Q1D unsteady flowfield model, in this work, we will consider a decoupling between the grain burnback model and the flowfield model, in order to reduce the computational cost required.udGREG model is, hence, used as a pre-processor that generates tables of pre-evaluated grain geometrical properties for a constant burning rate in time and space.udDuring the numerical simulation, these tables of port area, wet perimeter and burning perimeter are then interpolated using the local increment of the web variable, defined by the local grain burning rate, coming from APN and LR models.udThe final objective is, hence, to develop an analysis/simulation capability of SRM internal ballistic for the entire combustion time, with simplified physical models, in order to reduce the computational cost required, but ensuring, in the meanwhile, an accuracy of the simulation greater than the one usually given by 0D quasi steady models.udIn this framework, the comparison between the results obtained with a 0D quasi steady chamber model and SPINBALL will be made and the effects of the increased detail level of the internal ballistic simulation on the overall prediction capability will be discussed for three SRM: Z23 second stage of the new European launcher VEGA and two military motors, NAWC n. 6 and 13, on which there are different work in literature, and all motor data are available.udComparisons with the experimental data and with other codes results will be also made.
机译:在固体推进剂火箭发动机的设计和开发中,为了减少所有的计划时间和成本,使用能够在给定条件下模拟,预测和重构给定发动机在所有操作条件下的行为的数值工具尤为重要。致力于通过Q1D非稳态数值模拟模型SPINBALL(固体推进剂火箭发动机内部)对整个燃烧时间(点火瞬变,准稳态和尾气熄灭)内SRM内部弹道进行数值模拟的方法。 udSPINBALL来自SPIT模型(固体推进剂火箭发动机点火瞬变)的数值,数学和物理模型的更新和进一步发展,从而可以扩展SRM内部弹道的数值模拟,从点火开始udSPINBALL核心模型是内部弹道手的准1D非稳态气体动力学模型ic,其源项考虑了点火器,谷物推进剂和热保护装置对膛流场条件的影响。 ud流被假定为具有时空变化的热物理特性的完美气体的非反应混合物(标准热力学方法)。控制方程通过Godunov型方案离散化,在时空上是一阶或二阶。这种方法的使用允许考虑由于热保护引起的烧蚀现象和谷物推进剂的燃烧反应而将其添加到腔室中,但是甚至考虑了谷物推进剂放热反应的平衡点,这是燃料的功能。 ud此主模型由几个子模型完成,以描述在整个燃烧时间内导致内部弹道的所有驱动现象:点火器模型,对流和辐射的传热模型,推进剂着火标准,考虑淹没和缝隙区域的空腔模型,带有压力项的谷物燃烧模型(APN模型)和带有侵蚀性项的谷物燃烧模型(Lenoir-Robillard模型)和Beddini)。其中一些来自SPIT模型。 ud基于在点火瞬变上表征内部弹道的驱动现象,已知在准稳态和尾气熄灭期间,电机孔流场条件主要由晶粒引起。 ud颗粒燃烧表面演化模型是基于全矩阵水平集方法的3D数值颗粒回归模型(称为GREG),在矩形和圆柱形结构化网格上均如此。为气动力学模型提供了沿电机轴及在淹没区的端口面积,湿周长和燃烧周长随时间变化的信息。 ud由汉密尔顿- Jacobi方程和守恒定律,它是基于时空行进方案的一阶或二阶(最小模通量限制器和Heun方法) ud对于一般和复杂的3D晶粒形状(例如finocyl晶粒),无论采用何种流场尺寸模型(0D或Q1D),都必须使用3D模型进行晶粒回火分析。 udGREG该模块可以直接通过CAD工具直接处理3D复杂几何形状,并通过全自动过程将其初始条件构建为与谷物推进剂的STL(立体平版印刷)文件以及热防护和隔热形状之间的狭窄符号距离函数。 ud通过建立镜像或周期性边界条件来利用谷物推进剂形状的对称性,从而降低了计算成本。 ud对谷物几何参数的评估(如面积,体积)和周长由Dirac Delta和Heaviside函数的强大二阶正则化制成,以避免与使用标准有关的典型问题正则化技术。 ud虽然潜在的GREG模块可以与Q1D非稳态流场模型完全耦合,但是在这项工作中,我们将考虑晶粒回燃模型与流场模型之间的去耦,以减少所需的计算成本。 udGREG模型因此,用作预处理程序,以生成在时间和空间上恒定燃烧速率的预先评估的晶粒几何特性表。 ud在数值模拟过程中,然后使用局部插值对这些端口面积,湿周长和燃烧周长表进行插值腹板变量的增量,由局部晶粒燃烧率定义因此,最终目标是使用简化的物理模型为整个燃烧时间开发SRM内部弹道的分析/仿真功能,以减少所需的计算成本,但要确保,同时,模拟精度比通常由0D拟稳态模型给出的精度更高。 ud在此框架中,将对0D拟稳态模型和SPINBALL所获得的结果进行比较,并且增加了对于三种SRM,将讨论内部弹道仿真对整体预测能力的详细程度:新型欧洲发射器Z23的第二阶段VEGA和两个军用发动机NAWC n。参考图6和13,在文献上有不同的工作,并且所有电动机数据都可用。 ud也将与实验数据和其他代码进行比较。

著录项

  • 作者

    Cavallini Enrico;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号