首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain
【2h】

Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain

机译:聚焦在软固体中的冲击剪切波的数值模拟和二维二维非线性均质模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m,  0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries.
机译:在诸如大脑之类的软固体中传播的剪切波是很强的非线性,可以发展成小于一个波长的冲击波。我们假设这些剪切冲击波可能是某些类型的脑外伤(TBI)的原因,并且颅骨的球形几何形状可能会将剪切波聚焦在大脑深处,从而产生弥漫性轴突损伤。提出了描述软固体(如大脑)中的非线性偏振切变波的理论模型和数值方法。它们包括软固体所特有的三次非线性,以及在软组织和大脑中观察到的非经典衰减和弥散的特定类型。数值方法在可能的情况下使用解析解进行验证,并在不存在已知解的情况下通过自相似缩放定律进行验证。基于人头X射线显微断层扫描(CT)的初始条件用于模拟大脑中的聚焦剪切激波。研究了三种形式的冲击波形成距离分别为2.54μm,0.018μm和0.0064μm。我们证明,在现实的载荷情况下,非线性特性与大脑中的测量值一致,并且当冲击波的传播距离和焦距重合时,非线性传播可以轻松克服衰减,从而在大脑深处产生剪切激波。由于这些作用,与颅骨表面的加速度相比,焦点处的加速度大15倍。这些结果表明,冲击波聚焦可能是弥漫性轴索损伤的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号