首页> 外文OA文献 >Sign-correlation partition based on global supervised descent method for face alignment
【2h】

Sign-correlation partition based on global supervised descent method for face alignment

机译:基于全局监督下降法的符号相关分割人脸对齐

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face alignment is an essential task for facial performance capture and expression analysis. As a complex nonlinear problem in computer vision, face alignment across poses is still not studied well. Although the state-of-the-art Supervised Descent Method (SDM) has shown good performance, it learns conflict descent direction in the whole complex space due to various poses and expressions. Global SDM has been presented to deal with this case by domain partition in feature and shape PCA spaces for face tracking and pose estimation. However, it is not suitable for the face alignment problem due to unknown ground truth shapes. In this paper we propose a sign-correlation subspace method for the domain partition of global SDM. In our method only one reduced low dimensional subspace is enough for domain partition, thus adjusting the global SDM efficiently for face alignment. Unlike previous methods, we analyze the sign correlation between features and shapes, and project both of them into a mutual sign-correlation subspace. Each pair of projected shape and feature keep sign consistent in each dimension of the subspace, so that each hyperoctant holds the condition that one general descent exists. Then a set of general descent directions are learned from the samples in different hyperoctants. Our sign-correlation partition method is validated in the public face datasets, which includes a range of poses. It indicates that our methods can reveal their latent relationships to poses. The comparison with state-of-the-art methods for face alignment demonstrates that our method outperforms them especially in uncontrolled conditions with various poses, while keeping comparable speed.
机译:面部对齐是面部性能捕获和表情分析的重要任务。作为计算机视觉中的一个复杂的非线性问题,跨姿势的人脸对齐仍然没有得到很好的研究。尽管最新的监督下降法(SDM)表现出良好的性能,但是由于各种姿势和表情,它可以在整个复杂空间中学习冲突下降方向。已经提出了全局SDM来通过特征和形状PCA空间中的域划分来处理这种情况,以进行面部跟踪和姿势估计。然而,由于未知的地面真实形状,它不适用于面部对准问题。在本文中,我们为全局SDM的域划分提出了一种符号相关子空间方法。在我们的方法中,只有一个缩小的低维子空间足以用于域划分,因此可以有效地调整全局SDM以进行面部对齐。与以前的方法不同,我们分析特征和形状之间的符号相关性,并将它们都投影到相互的符号相关子空间中。每一对投影的形状和特征在子空间的每个维度上都保持符号一致,因此每个超八分体都存在一个普遍下降的条件。然后从不同的高辛烷值的样本中获知一组一般的下降方向。我们的符号相关分区方法已在公开的人脸数据集中得到验证,其中包括一系列姿势。这表明我们的方法可以揭示它们与姿势的潜在关系。与最新的人脸对齐方法进行的比较表明,我们的方法在保持可比速度的同时,尤其是在各种姿势的不受控制的条件下,表现优于它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号