首页> 外文期刊>Computer Animation and Virtual Worlds >Supervised coordinate descent method with a 3D bilinear model for face alignment and tracking
【24h】

Supervised coordinate descent method with a 3D bilinear model for face alignment and tracking

机译:具有3D双线性模型的监督坐标下降法用于人脸对齐和跟踪

获取原文
获取原文并翻译 | 示例

摘要

Face alignment and tracking play important roles in facial performance capture. Existing data-driven methods for monocular videos suffer from large variations of pose and expression. In this paper, we propose an efficient and robust method for this task by introducing a novel supervised coordinate descent method with 3D bilinear representation. Instead of learning the mapping between the whole parameters and image features directly with a cascaded regression framework in current methods, we learn individual sets of parameters mappings separately step by step by a coordinate descent mean. Because different parameters make different contributions to the displacement of facial landmarks, our method is more discriminative to current whole-parameter cascaded regression methods. Benefiting from a 3D bilinear model learned from public databases, the proposed method can handle the head pose changes and extreme expressions out of plane better than other 2D-based methods. We present the reliable result of face tracking under various head poses and facial expressions on challenging video sequences collected online. The experimental results show that our method outperforms state-of-art data-driven methods.
机译:面部对齐和跟踪在面部性能捕获中起着重要作用。现有的用于单眼视频的数据驱动方法存在姿势和表情的巨大变化。在本文中,我们通过引入具有3D双线性表示的新型监督坐标下降方法,提出了一种有效且鲁棒的方法来完成此任务。在当前方法中,我们不是通过级联回归框架直接学习整个参数和图像特征之间的映射,而是通过坐标下降平均值逐步学习各个参数映射集。由于不同的参数对面部标志的位移有不同的贡献,因此我们的方法与当前的全参数级联回归方法更具区别性。受益于从公共数据库中学习到的3D双线性模型,与其他基于2D的方法相比,该方法可以更好地处理头部姿势变化和极端表情。我们提出了在在线收集的具有挑战性的视频序列上,在各种头部姿势和面部表情下进行面部跟踪的可靠结果。实验结果表明,我们的方法优于最新的数据驱动方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号