首页> 外文期刊>Machine Learning >Dual coordinate descent methods for logistic regression and maximum entropy models
【24h】

Dual coordinate descent methods for logistic regression and maximum entropy models

机译:用于Logistic回归和最大熵模型的双坐标下降法

获取原文
获取原文并翻译 | 示例

摘要

Most optimization methods for logistic regression or maximum entropy solve the primal problem. They range from iterative scaling, coordinate descent, quasi-Newton, and truncated Newton. Less efforts have been made to solve the dual problem. In contrast, for linear support vector machines (SVM), methods have been shown to be very effective for solving the dual problem. In this paper, we apply coordinate descent methods to solve the dual form of logistic regression and maximum entropy. Interestingly, many details are different from the situation in linear SVM. We carefully study the theoretical convergence as well as numerical issues. The proposed method is shown to be faster than most state of the art methods for training logistic regression and maximum entropy.
机译:逻辑回归或最大熵的大多数优化方法都可以解决原始问题。它们的范围包括迭代缩放,坐标下降,准牛顿和截断牛顿。解决双重问题的工作很少。相反,对于线性支持向量机(SVM),已显示出解决双重问题的方法非常有效。在本文中,我们应用坐标下降法来解决逻辑回归和最大熵的对偶形式。有趣的是,许多细节与线性SVM中的情况不同。我们仔细研究了理论收敛性和数值问题。所显示的方法比训练逻辑回归和最大熵的大多数现有技术方法要快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号