首页> 外文OA文献 >Feature selection using Fuzzy Entropy measures with Yu's Similarity measure
【2h】

Feature selection using Fuzzy Entropy measures with Yu's Similarity measure

机译:基于模糊熵测度和余氏相似度测度的特征选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, feature selection in classification based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classifier. As the similarity classifier we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classification on our data set the empirical results were very promising, the highest classification accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using different similarity classifiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simplified the classification task
机译:在这项研究中,强调了基于分类的问题中的特征选择。特征选择方法的作用是通过丢弃数据集中的冗余和不相关特征来选择重要特征,我们使用模糊熵测度研究了这种情况。我们利用Yu的相似度开发了基于模糊熵的特征选择方法,并使用相似度分类器对其进行了测试。作为相似度分类器,我们使用了Yu的相似度,我们在真实世界的数据集(即皮肤病学数据集)上测试了我们的相似度。通过对我们的数据集进行分类之前基于模糊熵测度进行特征选择,实证结果非常有希望,在测试我们与数据集的相似度时,可以达到98.83%的最高分类精度。然后将获得的结果与以前使用不同的相似性分类器获得的一些其他结果进行比较,获得的结果显示出比以前获得的结果更好的准确性。所使用的方法有助于减少所使用的数据集的维数,加快学习算法的计算时间,从而简化了分类任务

著录项

  • 作者

    Cesar Iyakaremye;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号