首页> 外文OA文献 >Three-Dimensional Simulations of Marangoni-Benard Convection in Small Containers by the Least-Squares Finite Element Method
【2h】

Three-Dimensional Simulations of Marangoni-Benard Convection in Small Containers by the Least-Squares Finite Element Method

机译:最小二乘有限元法对小容器中马兰戈尼-贝纳德对流的三维模拟

摘要

This paper reports a numerical study of the Marangoni-Benard (MB) convection in a planar fluid layer. The least-squares finite element method (LSFEM) is employed to solve the three-dimensional Stokes equations and the energy equation. First, the governing equations are reduced to be first-order by introducing variables such as vorticity and heat fluxes. The resultant first-order system is then cast into a div-curl-grad formulation, and its ellipticity and permissible boundary conditions are readily proved. This numerical approach provides an equal-order discretization for velocity, pressure, vorticity, temperature, and heat conduction fluxes, and therefore can provide high fidelity solutions for the complex flow physics of the MB convection. Numerical results reported include the critical Marangoni numbers (M(sub ac)) for the onset of the convection in containers with various aspect ratios, and the planforms of supercritical MB flows. The numerical solutions compared favorably with the experimental results reported by Koschmieder et al..
机译:本文报道了平面流体层中Marangoni-Benard(MB)对流的数值研究。采用最小二乘有限元法(LSFEM)求解三维斯托克斯方程和能量方程。首先,通过引入诸如涡度和热通量的变量,将控制方程式简化为一阶。然后将所得的一阶系统转换为div-curl-grad公式,并容易证明其椭圆率和允许的边界条件。这种数值方法提供了速度,压力,涡度,温度和热传导通量的等阶离散,因此可以为MB对流的复杂流动物理学提供高保真度的解决方案。报告的数值结果包括具有不同长宽比的容器中对流发生的临界Marangoni数(M(sub ac)),以及超临界MB流的平面形式。数值解与Koschmieder等人报道的实验结果相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号